高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc

高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc

ID:56699721

大小:253.00 KB

页数:5页

时间:2020-07-05

高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc_第1页
高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc_第2页
高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc_第3页
高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc_第4页
高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc_第5页
资源描述:

《高考数学一轮复习 2.3函数的奇偶性与周期性教案 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三节函数的奇偶性与周期性教学目标:知识与技能:了解函数奇偶性的含义与函数的周期性,会运用函数的图象理解和研究的奇偶性过程与方法:利用图象的单调性研究函数奇偶性质情感、态度与价值观:教学过程中,要让学生充分体验数形结合思想,感受图形的对称性及周期性教学重点:函数的奇偶性质及图象的对称性教学难点:利用函数的奇偶性及周期性研究函数教具:多媒体、实物投影仪教学过程:一、复习引入:1.奇函数、偶函数的定义对于函数f(x)的定义域内的任意一个x.(1)f(x)为偶函数⇔f(-x)=f(x)(2)f(x)为奇函数⇔f(-x

2、)=-f(x)2.奇偶函数的性质(1)图象特征:奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(2)定义域的特征:奇偶函数的定义域关于原点对称,这是判断奇偶性的前提.3)对称区间上的单调性:奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(4)奇函数图象与原点的关系:如果奇函数f(x)在原点有意义,则f(0)=03.周期性(1)周期函数:T为函数f(x)的一个周期,则需满足的条件:①T≠0;②f(x+T)=f(x)对定义域内的任意x都成立.(2)最小正周期:

3、如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做它的最小正周期.(3)周期不唯一:若T是函数y=f(x)的一个周期,则nT(n∈Z,且n≠0)也是f(x)的周期.二例题讲解【典例1】判断下列各函数的奇偶性.(1)f(x)=(2)f(x)=【思路点拨】先求定义域,看定义域是否关于原点对称,在定义域下,解析式带绝对值号的先尽量去掉,再判断f(-x)与f(x)的关系,分段函数应分情况判断.【规范解答】(1)由得x2=3,∴函数f(x)的定义域为此时f(x)=0,因此函数f(x)既是奇函数

4、,又是偶函数.(2)由得-1<x<0或0<x<1.∴函数f(x)的定义域为(-1,0)∪(0,1).此时x-2<0,

5、x-2

6、-2=-x,∴又∵∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为:(-∞,0)∪(0,+∞),关于原点对称,∵当x<0时,-x>0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x).综上可知:对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.【变式训练】(1)若函数f(x

7、)=3x+3-x与g(x)=3x-3-x的定义域均为R,则()(A)f(x)与g(x)均为偶函数(B)f(x)为偶函数,g(x)为奇函数(C)f(x)与g(x)均为奇函数(D)f(x)为奇函数,g(x)为偶函数答案B(2)判断下列函数的奇偶性.①f(x)=答案都是奇函数【典例2】(1)(2013·湖南高考)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于(  )(A)4  (B)3  (C)2  (D)1(2)(2014·泉州模拟)设f(x)为定义在R

8、上的奇函数,当x≥0时,f(x)=3x-2x+a(a∈R),则f(-2)=(  )(A)-1  (B)-4  (C)1  (D)4【思路点拨】(1)利用f(-x)=-f(x),g(-x)=g(x),构造方程组求解.(2)利用函数奇偶性把求f(-2)转化为求f(2)的值.【规范解答】(1)选B.因为f(x)是奇函数,g(x)是偶函数.所以f(-1)=-f(1),g(-1)=g(1),分别代入f(-1)+g(1)=2,f(1)+g(-1)=4再相加得g(1)=3.(2)选B.因为f(x)为定义在R上的奇函数,所以f

9、(0)=0,即f(0)=30-2×0+a=0,得a=-1,所以x≥0时,f(x)=3x-2x-1,所以f(2)=32-2×2-1=4.所以f(-2)=-f(2)=-4.【小结】应用函数奇偶性可解决的四类问题及方法(1)已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式.(3)已知函数的奇偶性,求函数解析式中参数的值利用待定系数法:利

10、用f(x)±f(-x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.【变式训练】设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=()(A)-3(B)-1(C)1(D)3【解析】选A.由奇函数的定义有f(-x)=-f(x),

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。