高中数学 1.3函数的单调性学案1 新人教A版必修.doc

高中数学 1.3函数的单调性学案1 新人教A版必修.doc

ID:56672083

大小:180.50 KB

页数:2页

时间:2020-07-03

高中数学 1.3函数的单调性学案1 新人教A版必修.doc_第1页
高中数学 1.3函数的单调性学案1 新人教A版必修.doc_第2页
资源描述:

《高中数学 1.3函数的单调性学案1 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教师批阅定等河南省郑州市实验高级中学高中数学1.3函数的单调性1学案新人教A版必修11.会用函数的单调性来比较函数值大小;2.会根据图像说出函数的单调区间,并能指出其增减性;3.会判断函数的单调性并能用定义证明函数的单调性.自主探究1.(1)对于二次函数,当时,单调递增区间是单调递减区间是当时,单调递增区间是单调递减区间是(2)对于反比例函数,当时,在区间上单调递当时,在区间上单调递2.增函数、减函数的定义增函数:减函数:注意事项:①单调性是对定义域内而言的,离开了定义域和相应区间就谈不上单调性。②对于某个具体函

2、数的单调区间,可以是(如一次函数),可以是定义域(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间上都是增(或减)函数,一般认为函数在上是增(或减)函数。3.判断函数单调性的方法:(1)定义法用定义证明函数单调性的步骤是证明函数单调性的步骤:(2)设任意的函数;函数.交流探究标例1.已知函数在上是减函数,试比较的大小.(学习目标1)例2:求下列函数的单调区间并指出其在单调区间上是增函数还是减函数(学习目标2)(1)(2)(3)例3:证明函数在(-,0)上是增函数。(学习目标3)变式1:证明函

3、数在区间[0,+)上是增函数。(学习目标3)变式2:判断函数在定义域内的单调性,并证明。(学习目标3)变式3:讨论在上的单调性。(学习目标3)归类方法1.利用函数图像可以直接得到函数的单调区间,有时候会涉及函数反折变换。2.遇到有关根式问题时,会进行分子或分母的有理化。3.不论是证明、判断还是讨论函数单调性,都要用单调性定义证明。自主测评1.下列函数在区间(0,+)上不是增函数的是()A.B.C.D.2.若函数在区间上是增函数,在区间上也是增函数,则函数在区间A.必是增函数B.必是减函数C.是增函数或减函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。