高三数学第一轮复习函数的单调性与最值导学案 文.doc

高三数学第一轮复习函数的单调性与最值导学案 文.doc

ID:56663571

大小:284.00 KB

页数:8页

时间:2020-07-02

高三数学第一轮复习函数的单调性与最值导学案 文.doc_第1页
高三数学第一轮复习函数的单调性与最值导学案 文.doc_第2页
高三数学第一轮复习函数的单调性与最值导学案 文.doc_第3页
高三数学第一轮复习函数的单调性与最值导学案 文.doc_第4页
高三数学第一轮复习函数的单调性与最值导学案 文.doc_第5页
资源描述:

《高三数学第一轮复习函数的单调性与最值导学案 文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、吉林省东北师范大学附属中学2015届高三数学第一轮复习(知识梳理+题型探究+方法提升+课后作业)函数的单调性与最值导学案文知识梳理:(阅读教材必修1第27页—第32页)1、函数的单调性及性质(1)、定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量当时,都有,那么就说f(x)在区间D上是。(2)、函数的单调性的理解:要注意以下三点:①、单调性是与区间紧密相关的概念,一个函数在不同的区间上可以有不同的单调性②、单调性是函数在某个区间上“整体”性质,因此定义中的具有任

2、意性,不能用特殊值代替.③、由于定义是充要条件的命题,因此由f(x)是增(减)函数,f()0()()>0减函数的定义等价于:)<0()()<0(3)、单调区间:如果函数在某个区间是增函数或减函数,那么就说个函数在这个区间上具有(严格的)单调性,区间D叫做函数的单调区间。(4)、利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:①、任取,且②、作差③、变形(通常是因式分解和配方)④、判断符号

3、(即判断,的正负)⑤下结论(即指出函数y=f(x)在给定的区间上的单调性)(5)、函数单调性的性质①、奇函数在其关于原点对称的区间上的单调性;②、偶函数在其关于原点对称的区间上的单调性;③、在公共定义域内:增函数+增函数是,减函数+减函数是增函数-减函数是,减函数-增函数是。1、函数的最值对于函数y=f(x),设定义域为A,则(1)、若存在,使得对于任意的,恒有成立,则称f()是函数f(x)的。(2)、若存在,使得对于任意的,恒有成立,则称f()是函数f(x)的。二、题型探究探究一:函数的单调性例1:[20

4、14·北京卷]2.下列函数中,定义域是R且为增函数的是(  )A.y=e-xB.y=x3C.y=lnxD.y=

5、x

6、[解析]2.B由定义域为R,排除选项C,由函数单调递增,排除选项A,D.例2:[2014·湖南卷]4.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是(  )A.f(x)=B.f(x)=x2+1C.f(x)=x3D.f(x)=2-x[解析]4.A 由偶函数的定义,可以排除C,D,又根据单调性,可得B不对.探究二:抽象函数例3:定义在R上的函数f(x),f(0),当x>0时,f(x)>1

7、,且对任意的a、b,有f(a+b)=f(a)f(b).(1)求证:f(0)=1;(2)求证:对任意x,f(x)>0;(3)证明:f(x)是R上的增函数。探究三:与单调性有关的参数问题例4:已知函数(1)求函数的值域;(2)若时,函数的最小值为,求的值和函数的最大值。所以在上是减函数或(不合题意舍去)当时有最大值,即探究四、函数的单调性与最值例5:求下列函数的值域1、y=x2-2x的定义域为{0,1,2,3}2、y=3、y=1、y=x+三、方法提升1、函数的单调性只能在函数的定义域内讨论,函数在给定的区间的单

8、调性反映函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域内上的整体性质,函数的单调性是针对某个区间而言的,所以受到区间的限制;2、求函数的单调区间,首先请注意函数的定义域,函数的增减区间都是定义域的子区间;其次,掌握基本初等函数的单调区间,常用的方法有:定义法,图象法,复合函数法和导数法;3、利用函数的单调性可以解函数不等式、方程及函数的最值问题。四、反思感悟。五、课时作业一、选择题1.设偶函数的定义域为,当时,是增函数,则,的大小关系是(A)ABCD2.如果实数x、y满足x+

9、y=4,则x2+y2的最小值是(C)中学学科网A.4.B.6.C.8.D.10.3.已知偶函数在区间单调递增,则满足<的x取值范围是(A)A.(,)B.(,)C.(,)D.4.若偶函数在上是增函数,则下列关系式中成立的是(D)中学学科网A.B.C.D.5.已知f(x)是R上的奇函数,且f(2)=0,x为单调增函数,求xf(x)的解集()中学学科网A.[-2,0]B.C.D.6.偶函数在上单调递增,则与的大小关系是()A.               B.C.    D.7.设a,b∈R,且a>0,函数f(x

10、)=x2+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于().A.4B.8C.10D.168.函数f(x)=x2+2(a-1)x+2在区间(-∞,4)上递减,则a的取值范围是()A.B.C.(-∞,5)D.9.已知函数,则函数的最大值是()A.22B.13C.11D.-310.已知,t是大于0的常数,且函数的最小值为9,则t的值为()A.4B.6C.8D.10二、填空题11.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。