欢迎来到天天文库
浏览记录
ID:56628695
大小:203.50 KB
页数:24页
时间:2020-06-30
《八年级数学下册 第三章 分式教案 北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章分式§2.1 分式(1)知识与技能目标:1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.2.使学生能够求出分式有意义的条件.过程与方法目标:能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.情感与价值目标在土地沙化问题中,体会保护人类生存环境的重要性。培养学生严谨的思维能力.教学重点和难点准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点.教学方法:分组讨论.教学过程情境引入:面对日益严重的土地沙化问题,某县决定分期分批固
2、沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程;2、解读探究,,认真观察上面的式子,方程有什么特点?做一做1.正n边形的每个内角为度2一箱苹果售价a元,箱子与苹果的总质量为mkg,箱子的质量为nkg,则每千克苹果售价是多少元?上面问题中出现的代数式,,;它们有什么共同特征?(1)由学生分组
3、讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:的分母.(2)由学生举几个分式的例子.(3)学生小结分式的概念中应注意的问题.①分母中含有字母.②如同分数一样,分式的分母不能为零.(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论)例1(1)当a=1,2时,求分式的值;当a取何值时,分式有意义?解:(1)当a=1时,当a=2时(2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。由分母2a=0,得a=0,所以,当a取零以外的任何实数时,分式有意义。例2当x取何值时,下列分式有意义?思考:若把题目要求改为:“当
4、x取何值时下列分式无意义?”该怎样做?例3 当x取何值时,下列分式的值为零?解:由分子x+3=0得x=-3.而当x=-3时,分母2x-7=-6-7≠0.∴当x=-3时,原分式值为零.小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.课堂小结本节课你学到了哪些知识和方法?1.分式与分数的区别.2.分式何时有意义?3.分式何时值为零?练习:教材P.61作业教材P.61A组3.1教学反思:§2.1 分式(2)教学目标(一)知识与技能目标使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.(二)过程与方法目标通过分式的化简提高学生的运算能力.(三)
5、情感与价值目标.渗透类比转化的数学思想方法.教学重点和难点1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.2.难点:灵活运用分式的基本性质进行分式化简.教学方法 分组讨论.教学过程(一)情境引入1.数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”2.问:这个富家子弟为什么会犯这样的错误?3.分数约分的方法及依据是什么?.(1)的依据是什么?呢?(2)你认为分式与相等吗?与
6、呢?(二)新课1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:2.加深对分式基本性质的理解:例1下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)化简:(1);(2)做一做练习课堂练习(三)课堂小结1、通过本节课学习,你有什么收获?作业教材P.66习题3.2教学反思:§2.2分式的乘除法教学目标(一)知识与技能目标使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式
7、有关的实际问题.(二)过程与方法目标经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性(三)情感与价值目标教学过程中渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.教学重点和难点重点是掌握分式的乘除运算难点是分子、分母为多项式的分式乘除法运算.教学方法 小组合作交流教学过程1、情境导入有一次鲁班的手不慎被一片小草割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的构造发明了锯子。鲁班在这里就运用了“类比”的思想方法,“类比”也是数学学习中常用的一种重要方法。观察下列运
此文档下载收益归作者所有