欢迎来到天天文库
浏览记录
ID:56625145
大小:116.00 KB
页数:3页
时间:2020-06-30
《八年级数学上册12.2 三角形全等的判定导学案1(新版)新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、12.2三角形全等的判定(一)学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件.4.能运用“SAS”证明简单的三角形全等问题.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习过程:一、自主学习1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:P35操作总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形不一定
2、全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AO
3、B=∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)如果把△A'B'C'剪下来放到△ABC上,想一想△A'B'C'与△ABC是否能够完全重合?5
4、.“边角边”公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)书写格式:在△ABC和△A1B1C1中∴△ABC≌△A1B1C1(SAS)用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS”是证明三角形全等的一个依据..二、合作交流探究与展示(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB
5、=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_____________________还需要一个条件_____________(这个条件可以证得吗?).三、当堂检测:(必做题:1、2、3、4题,选做题:5题)1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:如图点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.3、已知:AD∥BC,AD=CB,AE=CF(图5).求证:△ADF≌△CBE4、如图,∠ABC=∠DCB,∠ACB=
6、∠DCB,试说明△ABC≌△DCB.ADBC5、.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.
此文档下载收益归作者所有