欢迎来到天天文库
浏览记录
ID:56614682
大小:665.00 KB
页数:8页
时间:2020-06-29
《山东省高密市教科院2011-2012学年高二数学下学期期末考试试题 文 新人教A版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高密市教科院2011-2012学年高二下学期期末考试数学(文)试题本试卷共4页,分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,检测时间120分钟.第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合等于A.B.C.D.2.函数的定义域为A.B.C.D.3.设是实数,命题“若,则”的逆否命题是A.若,则B.若,则C.若,则D.若,则4.下列不等式一定成立的是A.B.C.D.5.设,则的大小关系是A.B.C.D.6.已知是定义在R上
2、的奇函数,它的最小正周期为T,则的值为A.B.C.D.07.已知是两条不同直线,、是两个不同平面,下列命题中的假命题是A.若B.若C.若D.若8.下列四个几何体中,各几何体的三视图有且仅有两个视图相同的是8A.①②B.②④C.①③D.②③9.不等式的解集为A.B.C.D.10.函数,则的图象大致是ABCD11.函数(为自然对数的底数)在区间上的最大值是A.B.C.D.12.偶函数满足,且在时,,则关于的方程,在上解的个数是A.B.C.D.第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷包括填空题和解答题共两个大题; 2.第Ⅱ卷所有
3、题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置.二.填空题:本大题共4个小题,每小题4分,共16分.13.计算______.14.已知函数若,则_____.15.观察下列不等式,,,……照此规律,第五个不等式为.816.已知实数若是使取得最大值的可行解,则实数的取值范围是______.三.解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)二次函数满足,且.(Ⅰ)求的解析式;(Ⅱ)若不等式在区间上恒成立,求实数的取值范围.18.(本小题满分12分)设命题:实数x满足,其中
4、;命题实数满足.(Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.19.(本小题满分12分)如图,四棱锥中,⊥平面,底面为矩形,,,为的中点.(Ⅰ)求证:⊥;(Ⅱ)求三棱锥的体积;(Ⅲ)在线段上是否存在一点,使得平面若存在,求出的长;若不存在,请说明理由.20.(本小题满分12分)已知定义域为的函数是奇函数.8(Ⅰ)求的值;(Ⅱ)解关于的不等式.21.(本小题共12分)某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系;每日的销售额(单位:万元)与日产量(单位:吨)满足函数
5、关系.已知每日的利润,且当时,.(Ⅰ)求的值;(Ⅱ)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.22.(本题满分14分)已知函数.(Ⅰ)当时,求函数的单调增区间;(Ⅱ)判断函数是否存在极值.8高二数学(文)参考答案及评分标准故.…………6分(Ⅱ)由题意得,即对恒成立,8分令,又在上递减,故,…10分故.…………12分18.(本小题满分12分)解:(Ⅰ)由得,又,所以,当时,1<,即为真时实数的取值范围是1<.…………3分由已知为真时实数的取值范围是.8若为真,则真且真,所以实数的取值范围是.…………6分(Ⅱ)是的充
6、分不必要条件,即,且,设A=,B=,则,……………8分又A==,B==},……………10分则且所以实数的取值范围是.……………………12分19.(本小题满分12分)(Ⅰ)证明:因为PD⊥平面ABCD,所以PD⊥AD.又因为ABCD是矩形,所以AD⊥CD,………2分因为所以AD⊥平面PCD.又因为平面PCD,所以AD⊥PC.………4分(Ⅱ)解:因为AD⊥平面PCD,VP-ADE=VA-PDE,所以AD是三棱锥A—PDE的高.…………5分因为E为PC的中点,且PD=DC=4,所以…………6分又AD=2,所以…………8分(Ⅲ)取AC中
7、点M,连结EM、DM,因为E为PC的中点,M是AC的中点,所以EM//PA,又因为EM平面EDM,PA平面EDM,所以PA//平面EDM.…………10分所以即在AC边上存在一点M,使得PA//平面EDM,AM的长为.……12分20.(本小题满分12分)解:(Ⅰ)因为是奇函数,所以,解得,…………3分又由,解得.…………6分(Ⅱ)由(Ⅰ)知由上式易知在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数8在R上是减函数).…………8分又因是奇函数,从而不等式等价于…………10分因为是减函数,由上式推得,即解不等式可得.…………1
8、2分21.(本小题共12分)(Ⅰ)由题意可得:,…………2分因为时,,所以,…………4分解得:.…………5分(Ⅱ)当时,,…………6分所以,…………9分当且仅当,即时取得等号.…………10分当时,,…………11分所以当时,取得最大值.所以当日产量为吨时,每日的利
此文档下载收益归作者所有