高一数学典型例题分析 函数的单调性.doc

高一数学典型例题分析 函数的单调性.doc

ID:56608926

大小:132.50 KB

页数:4页

时间:2020-06-29

高一数学典型例题分析 函数的单调性.doc_第1页
高一数学典型例题分析 函数的单调性.doc_第2页
高一数学典型例题分析 函数的单调性.doc_第3页
高一数学典型例题分析 函数的单调性.doc_第4页
资源描述:

《高一数学典型例题分析 函数的单调性.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.1函数的单调性·例题解析 【例1】求下列函数的增区间与减区间(1)y=

2、x2+2x-3

3、解(1)令f(x)=x2+2x-3=(x+1)2-4.先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=

4、x2+2x-3

5、的图像,如图2.3-1所示.由图像易得:递增区间是[-3,-1],[1,+∞)递减区间是(-∞,-3],[-1,1](2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x.当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2.

6、PGN0071B.TXT/PGN>∴增区间是(-∞,0)和(0,1)减区间是[1,2)和(2,+∞)(3)解:由-x2-2x+3≥0,得-3≤x≤1.令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是在x∈[-1,1]上是.∴函数y的增区间是[-3,-1],减区间是[-1,1].【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范围.解当a=0时,f(x)=x在区间[1,+∞)上是增函数.-4-用心爱心专心若a<0时,无解.∴a的取值范围是0≤a≤1.【例3】已知二次函数y=f(x)(x∈R

7、)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:(1)f(6)与f(4)解(1)∵y=f(x)的图像开口向下,且对称轴是x=3,∴x≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)时为减函数.解任取两个值x1、x2∈(-1,1),且x1<x2.当a>0时,f(x)在(-1,1)上是减函数.当a<0时,f(x)在(-1,1)上是增函数.【例5】利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.证取任意两个值x1,x2∈(-∞,+∞)且x1<x2.又∵x1-x2<0,∴f(x2)<f(x1)故f(x)在(-∞,+∞)上

8、是减函数.-4-用心爱心专心得f(x)在(-∞,+∞)上是减函数.解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由

9、上述的单调区间及最值可大致说明1°要掌握利用单调性比较两个数的大小.2°注意对参数的讨论(如例4).3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)4°例6是分层讨论,要逐步培养.-4-用心爱心专心-4-用心爱心专心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。