欢迎来到天天文库
浏览记录
ID:56584635
大小:147.00 KB
页数:3页
时间:2020-06-29
《九年级数学下册 28.1 锐角三角函数(第2课时)学案新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:28.1锐角三角函数【学习目标】⑴:感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。⑵:逐步培养学生观察、比较、分析、概括的思维能力。重点:难点:【学习重点】理解余弦、正切的概念。【学习难点】熟练运用锐角三角函数的概念进行有关计算。【导学过程】一、自学提纲:1、我们是怎样定义直角三角形中一个锐角的正弦的?EOABCD·2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。已知AC=,BC=2,那么sin∠ACD=()A.B.C.D.3、如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.则sin∠BAC=;sin∠ADC=.4、在
2、Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比是,现在我们要问:∠A的邻边与斜边的比呢?∠A的对边与邻边的比呢?为什么?二、合作交流:探究:一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C`=90o,∠B=∠B`=α,那么与有什么关系?三、教师点拨:类似于正弦的情况,如图在Rt△BC中,∠C=90°,当锐角A的大小确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比也分别是确定的.我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA==;把∠A的对边与邻边的比叫做∠A的正切,记作tan
3、A,即tanA==.例如,当∠A=30°时,我们有cosA=cos30°=;当∠A=45°时,我们有tanA=tan45°=.(教师讲解并板书):锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,cosA,tanA也是A的函数.例2:如图,在Rt△ABC中,∠C=90°,BC=6,sinA=,求cosA、tanB的值.四、学生展示:练习一:完成课本P81练习1、2、3练习二:1.在中,∠C=90°,a,b,c分别是∠A、∠B、∠C的对边,则有()A.B.C.D.本题主要考查锐解三角函数的定义,
4、同学们只要依据的图形,不难写出,从而可判断C正确.2.在中,∠C=90°,如果cosA=那么的值为()A.B.C.D.分析?本题主要考查锐解三角函数及三角变换知识。其思路是:依据条件,可求出;再由,可求出,从而,故应选D.3、如图:P是∠的边OA上一点,且P点的坐标为(3,4),则cosα=_____________.五、课堂小结:在Rt△BC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA==.sinA=把∠A的邻边与斜边的比叫做∠A的余弦,记作,即把∠A的对边与邻边的比叫做∠A的正切,记作,即六、作业设置:课本第85页习题28.1复习巩固第1题
5、、第2题.(只做与余弦、正切有关的部分)七、自我反思:本节课我的收获:。
此文档下载收益归作者所有