欢迎来到天天文库
浏览记录
ID:56523472
大小:463.26 KB
页数:19页
时间:2020-06-27
《初中数学相似三角形地判定定理.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、相似三角形的判定教学目标1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用“∽”符号;能准确写出相似三角形的对应角与对应边的比例式;2、掌握相似三角形判定的预备定理及相似三角形的判定定理1;3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长.4、了解判定定理1的证题方法与思路,应用判定定理l.一、复习1.什么叫做全等三角形?它在形状上、大小上有何特征?2.两个全等三角形的对应边和对应角有什么关系?3、复习平行线分线段成比例定理(文字表述及基本图形)本节学习相似三角形的定义及相关判定定理.二、学习新课相
2、似三角形的概念:我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形.相似三角形的概念作为相似三角形的判定方法之一.[说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例.相似比的概念:相似三角形对应边的比,叫做相似比(或相似系数).[说明]①两个相似三角形的相似比具有顺序性.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.类似地,如果两个边数相等的多边形的对应
3、角相等、对应边成比例,那么这两个多边形叫做相似多边形.相似多边形的对应边的比,叫做相似比.如图,是相似三角形,则相似可记作∽.由于,则与的相似比,则与的相似比.猜测两个三角形全等与相似的区别与联系:当两个相似三角形的相似比时,这两个相似三角形就成为全等三角形,因此全等三角形是相似三角形的特例.想一想:如果∽,∽那么与相似吗?利用相似三角形的定义说理.得到相似三角形具有传递性(性质)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似.思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?(2)所有直角三角形都相似吗?所有等腰直角三
4、角形呢?为什么?练习一:选择题下列四组图形,必是相似形的是( )A、有一个角为的两个等腰三角形;B、有一个角为的两个等腰梯形;C、邻边之比都为2:3的两个平行四边形;D、有一个角为的两个等腰三角形.新授2:相似三角形的预备定理课本通过探讨的方法,根据题设中有平行线的条件,结合定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:(1)本定理的导出不仅复习了相似三角形的定义,而且为后面的证明打下了基础。(2)由本定理的题设所构成的三角形有三种可能,基本图形在“平行线分线段成比例”出现过.(3)根据两个三角形相似写对应边的比
5、例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,做题时务必要认真仔细,如本定理的比例式,防止出现错误(4)根据两个三角形相似写对应边的比例式时,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.(5)有平行就有成比例线段,有平行就有相似三角形.我们称由预备定理得到的相似三角形为“平行线型”的相似三角形.新授3:相似三角形的判定定理1:如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似(两角对应相等,两个三角形相似).1.判定两个三角形全等的方法有哪几种?SAS、AS
6、A、AAS、SSS、HL.2.全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?“对应角相等”不变,“对应边相等”说成“对应边成比例”.3.我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.4.如图在△ABC和△中,,△ABC和△是否相似?5.我们现在已经学习了哪几个判定三角形相似的方法?①相似三角形的定义,②预备定理.6.根据本命题条件,探讨时应采用哪种方法?为什么
7、?预备定理,因为用定义条件明显不够.7.采用预备定理,必须构造出怎样的图形?8.应如何添加辅助线,才能构造出上一问的图形?(1)在△ABC边AB(或延长线)上,截取,过D作DE∥BC交AC于E.“作相似.证全等”.(2)在△ABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE=,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)三、巩固练习1、已知:在△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°,∠F=60°.(1)求证:△ABC∽△DEF;(2)写出对应边成比例的式子.2、(1)已知:如图5-58
8、,直线BE,DC交于A,∠E=∠C.求证:DA·AC=BA·AE.(2)若图形作以下变化,结论是否依然成立,
此文档下载收益归作者所有