【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc

【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc

ID:56521038

大小:840.50 KB

页数:12页

时间:2020-06-26

【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc_第1页
【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc_第2页
【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc_第3页
【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc_第4页
【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc_第5页
资源描述:

《【人教版】2020年高考数学文科总复习 课时规范练19函数y=Asin(ωx+φ)的图象及应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时规范练19 函数y=Asin(ωx+φ)的图象及应用基础巩固组1.将函数y=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动个单位长度,所得图象的函数解析式是(  )             A.y=sinB.y=sinC.y=sinD.y=sin2.已知函数f(x)=cos(ω>0)的最小正周期为π,则该函数的图象(  )A.关于点对称B.关于直线x=对称C.关于点对称D.关于直线x=对称3.(2017湖南邵阳一模,文6)若将函数f(x)=sin2x+cos2

2、x的图象向左平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值是(  )A.B.C.D.4.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k.据此函数可知,这段时间水深(单位:m)的最大值为(  )A.5B.6C.8D.105.(2017天津,文7)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,

3、φ

4、<π,若f=2,f=0,且f(x)的最小正周期大于2π,则(  )A.ω=,φ=B.ω=,φ=-C.ω=,φ=-D.ω=,φ=〚导学号24190738〛6.若

5、函数f(x)=2sin2x的图象向右平移φ个单位长度后得到函数g(x)的图象,若对满足

6、f(x1)-g(x2)

7、=4的x1,x2,有

8、x1-x2

9、的最小值为,则φ=(  )A.B.C.D.7.已知函数f(x)=sin(ωx+φ)的部分图象如图所示,则y=f取得最小值时x的集合为(  )A.B.C.D.〚导学号24190739〛8.函数y=sinx-cosx的图象可由函数y=2sinx的图象至少向右平移    个单位长度得到. 9.已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<

10、π)个单位长度得到,这两个函数的部分图象如图所示,则φ= . 10.(2017北京,文16)已知函数f(x)=cos-2sinxcosx.(1)求f(x)的最小正周期;(2)求证:当x∈时,f(x)≥-.〚导学号24190740〛综合提升组11.(2017辽宁大连一模,文11)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是(  )A.(1,)B.[0,2]C.[1,2)D.[1,]12.已知函数f(x)=cos(2x+φ)的图象关于点对称,若将函数f(x)的图象向右平移m(m>0)个单位

11、长度后得到一个偶函数的图象,则实数m的最小值为     . 13.已知函数y=3sin.(1)用五点法作出函数的图象;(2)说明此图象是由y=sinx的图象经过怎么样的变化得到的.〚导学号24190741〛创新应用组14.已知曲线C1:y=cosx,C2:y=sin,则下面结论正确的是(  )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各

12、点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2〚导学号24190742〛15.如图所示,某地夏天8—14时用电量变化曲线近似满足函数式y=Asin(ωx+φ)+b,ω>0,φ∈(0,π).(1)求这期间的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.答案:1.B 由题意,y=sinx的图象进行伸缩变换后得到y=sinx的图象,再进行平移后所得图象的函数为y=s

13、in=sin.故选B.2.D 由题意知ω=2,函数f(x)的对称轴满足2x+=kπ(k∈Z),解得x=(k∈Z),当k=1时,x=,故选D.3.C 函数f(x)=sin2x+cos2x=sin的图象向左平移φ个单位长度,所得函数y=sin的图象关于y轴对称,则有2φ+=kπ+,k∈Z.解得φ=kπ+,k∈Z.由φ>0,则当k=0时,φ的最小值为.故选C.4.C 因为sin∈[-1,1],所以函数y=3sin+k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值

14、为k+3=5+3=8,故选C.5.A 由题意可知,>2π,,所以≤ω<1.所以排除C,D.当ω=时,f=2sin=2sin=2,所以sin=1.所以+φ=+2kπ,即φ=+2kπ(k∈Z).因为

15、φ

16、<π,所以φ=.故选A.6.C 由函数f(x)=2sin2x的图象向右平移φ个单位长度后得到函数g(x)=2sin[2(x-φ)]的图象,可知对满足

17、f(x1)-g(x2)

18、=4的x1,x2,有

19、x1-x2

20、的最小值为-φ.故-φ=,即φ=.7

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。