高一数学教案:第15讲 数列的基本概念.doc

高一数学教案:第15讲 数列的基本概念.doc

ID:56516809

大小:421.50 KB

页数:8页

时间:2020-06-26

高一数学教案:第15讲 数列的基本概念.doc_第1页
高一数学教案:第15讲 数列的基本概念.doc_第2页
高一数学教案:第15讲 数列的基本概念.doc_第3页
高一数学教案:第15讲 数列的基本概念.doc_第4页
高一数学教案:第15讲 数列的基本概念.doc_第5页
资源描述:

《高一数学教案:第15讲 数列的基本概念.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、辅导教案学员姓名:学科教师:年级:辅导科目:授课日期××年××月××日时间A/B/C/D/E/F段主题数列的基本概念教学内容1.理解数列的概念和基本数列类型;2.理解通项公式和递推公式,会求解某些特殊数列的通项公式。(以提问的形式回顾)1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.这两点注意是数列与集合的区别,集

2、合具有无序性和互异性,而数列是有顺序的而且可以出现相同数字,教师讲解时可以深入提问学生。2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….此处如果学生理解不好,可以举一个具体数列,说明一下第1项,第2项….3.数列的一般形式:,或简记为,其中是数列的第n项这部分要重点强调带大括号的和不带大括号的的区别。4.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6.是有穷数列无穷数列:项数无限的数列.

3、例如数列1,2,3,4,5,6….是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。递减数列:从第2项起,每一项都不大于它的前一项的数列。常数数列:各项相等的数列。摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列5.数列的表示方法:列举法;图像法;解析法(通项公式)数列的通项公式如果数列{an}的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.递推法:数列的递推公式如果已知数列{an}的首项(或前n项)及相

4、邻两项间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式。(采用教师引导,学生轮流回答的形式)例1.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…(2)0.8,0.88,0.888,…(3),,-,,-,,…(4),1,,,…(5)0,1,0,1,…解 (1)符号问题可通过(-1)n或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为an=(-1)n(6n-5)(n∈N*).(2)数列变形为(1-0.1),(

5、1-0.01),(1-0.001),…,∴an=(n∈N*).(3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-,因此原数列可化为-,,-,,…,∴an=(-1)n·(n∈N*).(4)将数列统一为,,,,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为bn=2n+1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n2},可得分母的通项公式为cn=n2+1,∴可得它的一个通项公式为an=(n∈N*).(

6、5)an=或an=(n∈N*)或an=(n∈N*).试一试:写出下面数列的一个通项公式.(1)2,4,6,8,…; (2)10,11,10,11,10,11,…; (3)-1,,-,,….解 (1)这是个混合数列,可看成2+,4+,6+,8+,….故通项公式an=2n+(n∈N*).(2)该数列中各项每两个元素重复一遍,可以利用这个周期性求an.原数列可变形为:10+0,10+1,10+0,10+1,….故其一个通项为:an=10+,或an=.(3)通项符号为(-1)n,如果把第一项-1看作-,则分

7、母为3,5,7,9,…,分母通项为2n+1;分子为3,8,15,24,…,分子通项为(n+1)2-1即n(n+2),所以原数列通项为:an=(-1)n(n∈N*).例2.设数列{an}满足写出这个数列的前5项.解 由题意可知a1=1,a2=1+=1+=2,a3=1+=1+=,a4=1+=1+=,a5=1+=1+=.试一试:在数列{an}中,已知a1=2,a2=3,an+2=3an+1-2an(n≥1),写出此数列的前6项.解 a1=2,a2=3,a3=3a2-2a1=3×3-2×2=5,a4=3a3

8、-2a2=3×5-2×3=9,a5=3a4-2a3=3×9-2×5=17,a6=3a5-2a4=3×17-2×9=33.例3.已知数列;(1)求这个数列的第10项;(2)是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间内有、无数列中的项?若有,有几项?若没有,说明理由.(1)解 设f(n)===.令n=10,得第10项a10=f(10)=.(2)解 令=,得9n=300.此方程无自然数解,所以不是该数列中的项.(3)证明 ∵an=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。