欢迎来到天天文库
浏览记录
ID:56467479
大小:1004.50 KB
页数:47页
时间:2020-06-19
《向量的坐标表示和空间向量基本定理.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3向量的坐标表示和空间向量基本定理第二章第1课时 空间向量的标准正交分解与坐标表示及空间向量基本定理1.在给定的空间直角坐标系中,i,j,k分别为x轴,y轴,z轴正方向上的单位向量,对于空间任意向量a,存在唯一一组三元有序实数(x,y,z),使得a=xi+yj+zk.我们把a=xi+yj+zk叫作a的标准正交分解,把i,j,k叫作标准正交基.__________叫作空间向量a的坐标,记作a=_________,a=____________叫作向量a的坐标表示.(x,y,z)(x,y,z)(x,y,z)(x,y,z)(x,y,z)2.向量
2、坐标的求法若向量a不在任何一个坐标平面内,把a的起点移到坐标原点,以a为对角线,以x轴,y轴,z轴为棱,作长方体.长方体各棱长就是相应______________.与平面向量一样,向量起点在原点时,终点坐标就是向量坐标.3.向量a在向量b上的投影一般地,若b0为b的单位向量,称a·b0=____________为向量a在向量b上的投影.任一向量在坐标轴正方向上的投影就是此向量相应坐标.坐标的绝对值
3、a
4、cos〈a,b〉4.空间向量基本定理如果向量e1、e2、e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3,
5、使得a=_____________________.λ1e1+λ2e2+λ3e35.基底(1)空间中不共面的三个向量e1、e2、e3叫作这个空间的一个__________.(2)空间中任意三个不共面的向量都可以构成空间的一个________.(3)如果作为空间的一个基底的三个基向量两两互相垂直,那么这个基底叫作__________.基底基底正交基底1.用空间三个不共面的已知向量a,b,c可以线性表示出空间任意一个向量,而且表示的结果是唯一的.2.空间任意三个不共面的向量都可以作为表示空间向量的一个基底.3.由于0可看作是与任意一个非零向量共
6、线,与任意两个非零向量共面,所以三个向量不共面,就隐含它们都不是0.要明确:一个基底是一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念.4.用基底中的基向量表示向量(即向量的分解),关键是结合图形,运用三角形法则、平行四边形法则及多边形法则,逐步把待求向量转化为基向量的“代数和”.5.空间向量基本定理的证明6.特殊向量的坐标表示若向量a平行x轴,则a=(x,0,0).若向量a平行y轴,则a=(0,y,0).若向量a平行z轴,则a=(0,0,z).若向量a平行xOy平面,则a=(x,y,0).若向量a平行yOz平面,则a=
7、(0,y,z).若向量a平行zOx平面,则a=(x,0,z).思路方法技巧空间向量的坐标表示[分析]若向量a可以用基向量e1,e2,e3表示为a=xe1+ye2+ze3,则(x,y,z)就是a在基底{e1,e2,e3}下的坐标.[点评]本题主要考查空间向量的坐标表示.解题时,首先要找准标准正交基,然后根据向量a=xi+yj+zk,则a=(x,y,z),即可得到结果.空间向量基本定理[点评]用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.[点
8、评]用基底表示空间向量,一般要用向量的加法、减法、数乘的运算法则,及加法的平行四边形法则,加法、减法的三角形法则.逐步向基向量过渡,直到全部用基向量表示.投影问题[点评]本题为综合题,用到了投影公式.(3)题中可由i·k=i·j=k·j=0,i·i=1,j·j=k·k=1求出.[点评]求投影有两种方法:①先求出两个点A、B分别在平面上的投影A′、B′,则A′、B′的连线就为AB在平面上的投影;②根据公式a·b0=
9、a
10、cos〈a,b〉,b0为b的单位向量.探索拓研创新探索性问题设a1=2i-j+k,a2=i+3j-2k,a3=-2i+j-3
11、k,a4=3i+2j+5k,试问是否存在实数λ、μ、v,使a4=λa1+μa2+va3成立?如果存在,求出λ、μ、v的值;如果不存在,请给出证明.[点评]本题的意思是a4能否用a1,a2,a3线性表示.其实,只要a1,a2,a3不共面,就可以表示空间任一向量.线性运算在向量运算中具有十分重要的作用.课堂巩固训练一、选择题1.如果a、b与任何向量都不能构成空间的一个基底,则()A.a与b共线B.a与b同向C.a与b反向D.a与b共面[答案]A[解析]因为空间任意三个不共面的向量都可以构成空间的一个基底,因此,a、b必与任何向量共面,所以a、b
12、为共线向量.故选A.[答案]A3.向量a=(0,2,3),则()A.a平行于x轴B.a平行于平面yOzC.a平行于平面zOxD.a平行于平面xOy[答案]B[解析]因为a的横坐标
此文档下载收益归作者所有