八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc

八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc

ID:56413590

大小:108.50 KB

页数:9页

时间:2020-06-23

八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc_第1页
八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc_第2页
八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc_第3页
八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc_第4页
八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc_第5页
资源描述:

《八年级数学下册 17.1 勾股定理导学案(无答案)(新版)新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、17.1勾股定理学习目标知识:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。能力:培养在实际生活中发现问题总结规律的意识和能力。情感:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。学习重点:1.勾股定理的内容及证明。学习难点:1.勾股定理的证明。教学流程【导课】目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不

2、起的成就。让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?【阅读质疑自主探究】例1已知:在△ABC中,∠C

3、=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。⑵拼成如图所示,其等量关系为:4S△+S小正=S大正4×ab+(b-a)2=c2,化简可证。⑶发挥学生的想象能力拼出不同的图形,进行证明。⑷勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4×ab+

4、c2右边S=(a+b)2左边和右边面积相等,即4×ab+c2=(a+b)2化简可证。【多元互动合作探究】1.勾股定理的具体内容是:。2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;⑵若D为斜边中点,则斜边中线;⑶若∠B=30°,则∠B的对边和斜边:;⑷三边之间的关系:。3.△ABC的三边a、b、c,若满足b2=a2+c2,则=90°;若满足b2>c2+a2,则∠B是角;若满足b2<c2+a2,则∠B是角。4.根据如图所示,利用面积法证明勾股定理【训练检测目标探究】1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则⑴c=。(已知a、b

5、,求c)⑵a=。(已知b、c,求a)⑶b=。(已知a、c,求b)2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=412…………19,b、c192+b2=c23.在△ABC中,∠BAC=120°,AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。4.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。求证:⑴AD2-AB2=BD

6、·CD⑵若D在CB上,结论如何,试证明你的结论。【迁移应用拓展探究】基础训练有关训练布置作业板书设计教后反思授课时间:累计课时:第十七章勾股定理17.1勾股定理(2)学习目标知识:会用勾股定理进行简单的计算。能力:树立数形结合的思想、分类讨论思想。情感:学习重点:1.勾股定理的简单计算。学习难点:1.勾股定理的灵活运用。教学流程【导课】复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。【多元互动合作探究】例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c。⑵已知a=1,c=2,求b。⑶已知c=17,b=8,求a。⑷已知a:b=1:2,c=5,求a。⑸已知b=1

7、5,∠A=30°,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。