高中数学 解题方法介绍16 概率与统计 苏教版.doc

高中数学 解题方法介绍16 概率与统计 苏教版.doc

ID:56375720

大小:264.00 KB

页数:22页

时间:2020-06-22

高中数学 解题方法介绍16 概率与统计 苏教版.doc_第1页
高中数学 解题方法介绍16 概率与统计 苏教版.doc_第2页
高中数学 解题方法介绍16 概率与统计 苏教版.doc_第3页
高中数学 解题方法介绍16 概率与统计 苏教版.doc_第4页
高中数学 解题方法介绍16 概率与统计 苏教版.doc_第5页
资源描述:

《高中数学 解题方法介绍16 概率与统计 苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第16讲概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结:类型一“非等可能”与“等可能”混同例1掷两枚骰子,求所得的点数之和为6的概率.错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=.类型二“互斥”与“对立”混同例2把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“

2、甲分得红牌”与“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上均不对错解A剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在:(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.类型三“互斥”与“独立”混同例3甲投篮命中率为O.8,乙投篮

3、命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B):剖析本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解:设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,则两人都恰好投中两次为事件A·

4、B,于是P(A·B)=P(A)×P(B)=0.16922用心爱心专心类型四“条件概率P(B/A)”与“积事件的概率P(A·B)”混同例4袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=.剖析本题错误在于P(AB)与P(B/A)的含义没有弄清,P(AB)表示在样本空间S中,A与B同时发生的概率;而P(B/A)表示在缩减的样本空间SA中,作为条件的A已经发生的条件下事件B发生的概率。解:P(C)=P(AB)=P(A)P(B/A

5、)=.备用1.某班数学兴趣小组有男生和女生各3名,现从中任选2名学生去参加校数学竞赛,求(I)恰有一名参赛学生是男生的概率;(II)至少有一名参赛学生是男生的概率;(Ⅲ)至多有一名参赛学生是男生的概率。解:基本事件的种数为=15种(Ⅰ)恰有一名参赛学生是男生的基本事件有=9种所求事件概率P1==0.6(Ⅱ)至少有一名参赛学生是男生这一事件是由两类事件构成的,即恰有一名参赛学生是男生和两名参赛学生都是男生,所求事件概率P2=(Ⅲ)至多有一名参赛学生是男生这一事件也是由两类事件构成的,即参赛学生没有男生和恰有一名参赛学生是男生,所求事件概率P3=2.已知两名射击运动员的射击水平,让他们各向目标

6、靶射击10次,其中甲击中目标7次,乙击中目标6次,若在让甲、乙两人各自向目标靶射击3次中,求:(1)甲运动员恰好击中目标2次的概率是多少?(2)两名运动员都恰好击中目标2次的概率是多少?(结果保留两位有效数字)解.甲运动员向目标靶射击1次,击中目标的概率为7/10=0.7乙运动员向目标靶射击1次,击中目标的概率为6/10=0.6(1)甲运动员向目标靶射击3次,恰好都击中目标2次的概率是(2)乙运动员各向目标靶射击3次,恰好都击中目标2次的概率是22用心爱心专心作业1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()(

7、A)(B)(C)(D)2.连续掷两次骰子,以先后得到的点数m、n为点P(m,n)的坐标,那么点P在圆x2+y2=17外部的概率应为()(A)(B)(C)(D)3.从含有500个个体的总体中一次性地抽取25个个体,假定其中每个个体被抽到的概率相等,那么总体中的每个个体被抽取的概率等于_______。4.若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是.(结果用分数表示)5.袋中有大小相同的5个白球和3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。