2012年人教版初升高招生考试数学试卷5.doc

2012年人教版初升高招生考试数学试卷5.doc

ID:56318919

大小:111.00 KB

页数:2页

时间:2020-06-11

2012年人教版初升高招生考试数学试卷5.doc_第1页
2012年人教版初升高招生考试数学试卷5.doc_第2页
资源描述:

《2012年人教版初升高招生考试数学试卷5.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2012年人教版初升高招生考试数学试卷(含答案)(满分100分,时间90分钟)五、(本题满分8分)20.学校6名教师和234名学生集体外出活动,准备租用445座大客车或30座小客车,若租用1辆大车2辆小车供需租车费1000元;若若租用2辆大车1辆小车供需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案。考点:二元一次方程组的应用;一元一次不等式组的应用。专题:应用题。分析:(1)设大、小车每辆的租车费各是x、y元根据题意列出方程组即可(

2、2)先要根据240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.求出租车总数是6辆,再根据总数240名师生和总租车费用不超过2300元列出不等式组。解答:(1)设大、小车每辆的租车费各是x、y元则x+2y=1000x=4002x+y=1100解得:y=300答:大、小车每辆的租车费各是400元、300元(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数是6辆,设大车辆数是x辆,则租小车(6-x)辆45x+30(6-x)≥240x≥4400x+300(6-

3、x)≤2300解得:x≤5∴4≤x≤5∵x是正整数∴x=4或5于是又两种租车方案,方案1:大车4辆小车2辆总租车费用2200元,方案2:大车5辆小车1辆总租车费用2300元,可见最省钱的是方案1点评:考查二元一次方程组和一元一次不等式组的应用。难度适中。六、(本题满分8分)21.在Rt⊿POQ中,OP=OQ=4,M是PQ中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与⊿POQ的两直角边分别交于点A、B,(1)求证:MA=MB(2)连接AB,探究:在旋转三角尺的过程中,⊿AOB的周长是否存在最

4、小值,若存在,求出最小值,若不存在。请说明理由。考点:直角三角形斜边上的中线等于斜边的一半的性质;全等三角形的判定与性质;勾股定理与二次函数最值的应用。专题:证明题;几何综合题。分析:(1)连接OM,证⊿PMA和⊿OMB全等即可。(2)先计算出∴OP=OA+OB=OA+PA=4再令OA=xAB=y则在Rt⊿AOB中,利用勾股定理得:y2=x2+(4-x)2=2x2-8x+16=2(x-2)2+8求出解答:(1)证明:连接OM∵Rt⊿POQ中,OP=OQ=4,M是PQ的中点∴OM=PM=PQ=2∠POM=∠BOM=∠P=450∵

5、∠PMA+∠AMO=∠OMB+∠AMO∴∠PMA=∠OMB⊿PMA≌⊿OMB∴MA=MB(2)解:⊿AOB的周长存在最小值理由是:⊿PMA≌⊿OMB∴PA=OB∴OA+OB=OA+PA=OP=4令OA=xAB=y则y2=x2+(4-x)2=2x2-8x+16=2(x-2)2+8≥8当x=2时y2有最小值=8从而y≥2故⊿AOB的周长存在最小值,其最小值是4+2点评:直角三角形斜边上的中线等于斜边的一半的性质;全等三角形的判定与性质;勾股定理与二次函数最值的应用,综合运用这些性质进行推理是解此题的关键.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。