考点跟踪突破考点跟踪突破23图形的平移.doc

考点跟踪突破考点跟踪突破23图形的平移.doc

ID:56259105

大小:199.50 KB

页数:5页

时间:2020-06-04

考点跟踪突破考点跟踪突破23图形的平移.doc_第1页
考点跟踪突破考点跟踪突破23图形的平移.doc_第2页
考点跟踪突破考点跟踪突破23图形的平移.doc_第3页
考点跟踪突破考点跟踪突破23图形的平移.doc_第4页
考点跟踪突破考点跟踪突破23图形的平移.doc_第5页
资源描述:

《考点跟踪突破考点跟踪突破23图形的平移.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、考点跟踪突破23 图形的平移、旋转与对称一、选择题1.(2015·贺州)下面的图形中,既是轴对称图形又是中心对称图形的是(C)2.(2015·广西)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为(A)A.(2,-1)B.(2,3)C.(0,1)D.(4,1)3.(2016·绥化)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是(C)A.B.C.D.4.(2016·海南)在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为(D)A.(1,2)

2、B.(2,-1)C.(-2,1)D.(-2,-1),第5题图)  ,第6题图)5.(2016·青岛)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)6.(2016·遵义)如图,正方形ABCD的边长为3,E,F分别是AB,CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是(C)A.3-4B.4-

3、5C.4-2D.5-2二、填空题7.(2016·泰州)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为__2.5__cm.,第7题图)  ,第8题图)8.(2015·梧州)如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=__110°__.9.(2015·河池)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是__A′(5,2)__.,第9题图)  ,第

4、10题图)10.(2016·临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为__6__.三、解答题11.(2016·荆门)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC

5、+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°12.(2015·崇左)如图,△A1B1C1是由△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.解:(1)A(-3,1),B(0,2),C(-1,4)(2)S△AOA1=×4×1=213.(2015·南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC关

6、于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).解:(1)画图略(2)画图略,S==14.(2017·原创题)如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上的一个动点,求EF+BF的最小值.解:连接BD,∵四边形ABCD是菱形,∴AC垂直平分BD.连接DE交AC于点F,连接BF,则BF=DF,又∵∠DAB=60°,AD=AB,∴△ABD是等边三角形,∴DE⊥AB,在Rt△AED中,由勾股定理有:DE===3,而DE=DF+EF=EF+BF=3

7、,即EF+BF的最小值是3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。