欢迎来到天天文库
浏览记录
ID:56247518
大小:1.54 MB
页数:24页
时间:2020-03-24
《高中常用函数性质及图像汇总.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中常用函数性质及图像一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。(二)一次函数1、一次函数的定义一般地,形如(,是常数,且)的函数,叫做一次函数,其中x是自变量。当时,一次函数,又叫做正比例函数。⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当,时,仍是一次函
2、数.⑶当,时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四
3、象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:
4、k
5、越大,越接近y轴;
6、k
7、越小,越接近x轴3、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-..,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移
8、b
9、个单位长度得到.(当b>0时,向上平移;当
10、b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k0)(2)必过点:(0,b)和(-,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:
11、k
12、越大,图象越接近于y轴;
13、k
14、越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直
15、线y=kx的图象向下平移b个单位.一次函数,符号图象性质随的增大而增大随的增大而减小4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点... b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而
16、减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移
17、b
18、个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)6、正比例函数和一次函数及性质正比例函数一次函数概念一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数.自变量范围X为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-,0)走向k>0时,直线经过一、三
19、象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y随x的增大而增大;(从左向右上升)k<0,y随x的增大而减小。(从左向右下降)倾斜度
20、k
21、越大,越接近y轴;
22、k
23、越小,越接近x轴图像的平移b>0时,将直线y=kx的图象向上平移个单位;..b<0时,将直线y=kx的图象向下平移个单位.6、直线()与()的位置关系(1)两直线平行且(2)两直线相交(3)两直线重合且(4)两直线垂直7、用待定系数法确
24、定函数解析式的一般步骤: (1)根据已知条件写出含有待定系数的函数关系式; (2)将x、y的几对值或图象上的几个点的坐
此文档下载收益归作者所有