重庆市重庆一中2015届高三数学10月月考试题 文.doc

重庆市重庆一中2015届高三数学10月月考试题 文.doc

ID:55989870

大小:397.50 KB

页数:9页

时间:2020-03-15

重庆市重庆一中2015届高三数学10月月考试题 文.doc_第1页
重庆市重庆一中2015届高三数学10月月考试题 文.doc_第2页
重庆市重庆一中2015届高三数学10月月考试题 文.doc_第3页
重庆市重庆一中2015届高三数学10月月考试题 文.doc_第4页
重庆市重庆一中2015届高三数学10月月考试题 文.doc_第5页
资源描述:

《重庆市重庆一中2015届高三数学10月月考试题 文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2014年重庆一中高2015级高三上期第二次月考数学试题卷(文科)一、选择题:(每小题5分,共计50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,则的值为A.B.C.D.2.“”是“”的(  )条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要3.函数的定义域是A.B.C.D.4.已知是夹角为的两个单位向量,若向量,则A.2 B.4C.5D.75.已知等差数列中,是方程的两根,则A. B.C.1007D.20146.函数的零点所在的一个区间是A.B.C.D.7.在中,角的对边分别为,已知命题若,则;命题若,则为等腰三角形或直角三角形,则下列

2、的判断正确的是为真B.为假C.为真D.为假8.一个几何体的三视图如图所示,则该几何体的体积为A. B.C.16D.3299.设对任意实数,不等式总成立.则实数的取值范围是A.B.C.D.10.过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点.若,则双曲线的离心率为A.B.C.D.二、填空题:(每小题5分,共计25分,把答案填在答题卡的相应位置.)11.复数(是虚数单位),则.开始1结束是输出否输入12.设为定义在上的奇函数,当时,(为实常数),则.13.不等式组所表示的平面区域面积为.14.如图是某算法的程序框图,若任意输入中的实数,则输出的大于的概率为.设与是定义在同一

3、区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在[0,3]上是“关联函数”,则的取值范围是.x23459Y18273235三、解答题:(本大题共6小题,共计75分,解答应写出文字说明、证明过程或演算步骤.)16.某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.参考公式:用最小二乘法求线性回归方程的系数公式:参考数据:2×18+3×27+4×32+5×3

4、5=42017.已知.(1)若,求曲线在点处的切线方程;(2)若求函数的单调区间.18.先将函数的图象上所有的点都向右平移个单位,再把所有的点的横坐标都伸长为原来的2倍,纵坐标不变,得到函数的图象.(1)求函数的解析式和单调递减区间;(2)若为锐角三角形的内角,且,求的值.19.已知三棱锥中,⊥,,为的中点ABMCDP,为9的中点,且△为正三角形.(1)求证:⊥平面;(2)若,,求三棱锥的体积.20.已知数列中,点在直线上,其中.(1)求证:为等比数列并求出的通项公式;(2)设数列的前且,令的前项和。21.已知椭圆过点,其焦距为.(1)求椭圆的方程;(2)已知椭圆具有如下性质

5、:若椭圆的方程为,则椭圆在其上一点处的切线方程为,试运用该性质解决以下问题:(i)如图(1),点为在第一象限中的任意一点,过作的切线,分别与轴和轴的正半轴交于两点,求面积的最小值;(ii)如图(2),过椭圆上任意一点作的两条切线和,切点分别为.当点在椭圆上运动时,是否存在定圆恒与直线9相切?若存在,求出圆的方程;若不存在,请说明理由.图(1)图(2)答案:一选择题:1-5DBCBD6-10CBABB二.填空题:11.-112.13.14.15.解答题16.解析:(1),,9,………………………………………5分………………………9分所求线性回归方程为:.………………………………

6、10分(2)当时,(万元),故预测该公司科研费用支出为10万元时公司所获得的利润为64.4万元………………13分17.(1)∴∴∴,又,所以切点坐标为∴所求切线方程为,即.……………6分(2)由得或……………8分,由,得.由,得或……………11分此时的单调递减区间为,单调递增区间为和.……13分18.解析:(1),依题意,有,……………4分9由得:,它的单调递减区间为……………8分(2)由(1)知,,是锐角,…………13分19.(1)证明:∵△PMB为正三角形,且D为PB的中点,∴MD⊥PB.又∵M为AB的中点,D为PB的中点,∴MD//AP,∴AP⊥PB.4又已知AP⊥PC

7、,∴AP⊥平面PBC,∴AP⊥BC,又∵AC⊥BC,,∴BC⊥平面APC,……………6分(2)解:有.∵AB=10,∴MB=PB=5,又BC=3,,,∴.又,.……………12分20.(1)代入直线中,有+1=2,,……………4分(2)9两式作差,……………8分;………12分21.(1)解:依题意得:椭圆的焦点为,由椭圆定义知:,所以椭圆的方程为.……………4分(2)(ⅰ)设,则椭圆在点B处的切线方程为令,,令,所以又点B在椭圆的第一象限上,所以9,当且仅当所以当时,三角形OCD的面积的最小值为……………

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。