高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt

高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt

ID:55867179

大小:1.18 MB

页数:31页

时间:2020-06-10

高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt_第1页
高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt_第2页
高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt_第3页
高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt_第4页
高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt_第5页
资源描述:

《高中数学 指数函数及性质题课课件课件 新人教A版必修1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学点一学点二学点三学点四学点五学点六学点七1.一般地,函数叫做指数函数,其中x是,函数的定义域是值域是.2.函数y=ax(a>0,且a≠1),当时,在(-∞,+∞)上是增函数;当时,在(-∞,+∞)上是减函数.3.y=ax(a>0,且a≠1)的图象一定过点.当a>1时,若x>0,则y,若x<0,则y;当00,则y,若x<0,则y.4.函数y=2x-2的图象可以看成指数函数y=2x的图象向平移个单位得到的;函数y=ax-m(a>0,且a≠1,m>0)的图象可以看成指数函数y=ax的图象向平移个单位得到的;函数y=ax+m(a>0,且a≠1,m>

2、0)的图象可以看成指数函数y=ax的图象向平移个单位得到的.y=ax(a>0,且a≠1)自变量R(0,+∞)a>101∈(0,1)∈(0,1)>1右2右m左m名师伴你行SANPINBOOK5.函数y=ax和y=a-x的图象关于对称;函数y=ax和y=-ax的图象关于对称;函数y=ax和y=-a-x的图象关于对称.6.当a>1时,af(x)>ag(x);当0ag(x)f(x)1时,在区间D上是函数;当0

3、.y轴y轴原点f(x)>g(x)增(减)减(增)名师伴你行SANPINBOOK学点一基本概念指出下列函数中,哪些是指数函数:(1)y=4x;(2)y=x4;(3)y=-4x;(4)y=(-4)x;(5)y=x;(6)y=4x2;(7)y=xx;(8)y=(2a-1)x(a>,且a≠1.)【分析】根据指数函数的定义进行判断.【解析】由定义,形如y=ax(a>0,且a≠1)的函数叫指数函数.由此可以确定(1)(5)(8)是指数函数.(2)不是指数函数.(3)是-1与指数函数4x的积.名师伴你行SANPINBOOK(4)中底数-4<0,所以不是指数函数.(6)是二次

4、函数,不是指数函数.(7)底数x不是常数,不是指数函数.【评析】基本初等函数:一次函数、二次函数、指数函数及后面将要学到的对数函数、幂函数,都有一定的形式,要注意定义的要求.名师伴你行SANPINBOOK已知指数函数y=(m2+m+1)·()x,则m=.解:∵y=(m2+m+1)·()x为指数函数,∴m2+m+1=1,即m2+m=0,∴m=0或-1.0或-1名师伴你行SANPINBOOK学点二函数的定义域值域求下列函数的定义域、值域:(1)y=2;(2)y=();(3)y=4x+2x+1+1;(4)y=10.【分析】由于指数函数y=ax(a>0,且a≠1)的定

5、义域是R,所以函数y=af(x)(a>0,且a≠1)与函数f(x)的定义域相同,利用指数函数的单调性求值域.名师伴你行SANPINBOOK【解析】(1)令x-4≠0,得x≠4.∴定义域为{x

6、x∈R,且x≠4}.∴≠0,∴2≠1,∴y=2的值域为{y

7、y>0,且y≠1}.(2)定义域为x∈R.∵

8、x

9、≥0,∴y==≥=1,故y=的值域为{y

10、y≥1}.(3)定义域为R.∵y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2,且2x>0,∴y>1.故y=4x+2x+1+1的值域为{y

11、y>1}.名师伴你行SANPINBOOK【评析】求与指数函数有关的

12、函数的值域时,要充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.如第(1)小题切记不能漏掉y>0.(4)令≥0,得≥0,解得x<-1或x≥1.故定义域为{x

13、x<-1或x≥1}.值域为{y

14、y≥0,且y≠10}.名师伴你行SANPINBOOK求下列函数的定义域:(1)y=2;(2)y=;(3)y=1-6.(1)要使函数有意义,必须1-x≠0,即x≠1,∴函数的定义域是{x

15、x∈R,且x≠1}.(2)要使函数有意义,必须-≥0,则≥2-1,∴-x2≥-1,即-1≤x≤1,∴函数的定义域是{x

16、-1≤x≤1}.名师伴你行SANPINBOOK(3)根据题

17、意得1-6≥0,即6≤1=60.∵6>1,∴x2+x-2≤0.解得-2≤x≤1.∴函数的定义域是[-2,1].名师伴你行SANPINBOOK学点三比较大小比较下列各题中两个数的大小:(1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2;(3)1.70.3,0.93.1.【分析】将所给指数值化归到同一指数函数,利用指数函数单调性比较大小;若不能化归为同一底数时,或求范围或找一个中间值再比较大小.名师伴你行SANPINBOOK【解析】(1)指数函数y=1.7x,由于底数1.7>1,∴指数函数y=1.7x在(-∞,+∞)上是增函数.∵2.5<3,∴1.

18、72.5<1.73.(2)函数y=0.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。