欢迎来到天天文库
浏览记录
ID:55826018
大小:743.00 KB
页数:20页
时间:2020-06-09
《锐角三角函数2教程.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§28.1锐角三角函数(2)探究如图,在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定,此时,其他边之间的比是否也确定了呢?为什么?ABC邻边b对边a斜边c当锐角A的大小确定时,∠A的邻边与斜边的比我们把∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即情境探究1、sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。2、sinA、cosA是一个比值(数值)。3、sinA、cosA的大小只与∠A的大小有关,而与直角三角形
2、的边长无关。如图:在Rt△ABC中,∠C=90°,正弦余弦当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是惟一确定的吗?想一想比一比在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与邻边的比是一个固定值。BCB′C′A′C′AC==所以ACBCA′C′B′C′=即ACBCA′C′B′C′=问:有什么关系?如图,Rt△ABC和Rt△A′B′C′,∠C=∠C′=90°,∠A=∠A′=α,由于∠C=∠C′=90°,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′如图:在
3、Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA。一个角的正切表示定值、比值、正值。ABC┌思考:锐角A的正切值可以等于1吗?为什么?可以大于1吗?对于锐角A的每一个确定的值,sinA、cosA、tanA都有唯一的确定的值与它对应,所以把锐角A的正弦、余弦、正切叫做∠A的锐角三角函数。例2如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sinA、cosA、tanA的值.解:∵又ABC6例题示范10变题:如图,在Rt△ABC中,∠C=90°,cosA
4、=,求sinA、tanA的值.解:∵ABC例题示范设AC=15k,则AB=17k所以下图中∠ACB=90°,CD⊥AB,垂足为D。指出∠A和∠B的对边、邻边。试一试:ABCD(1)tanA==AC()CD()(2)tanB==BC()CD()BCADBDAC如图,在Rt△ABC中,锐角A的邻边和斜边同时扩大100倍,tanA的值()A.扩大100倍B.缩小100倍C.不变D.不能确定ABC┌C试一试:例3:如图,在Rt△ABC中,∠C=90°例题示范1.求证:sinA=cosB,sinB=cosA2
5、.求证:3.求证:ABC例4:如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若例题示范那么()B变题:如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若AB=10,CD=6,求.aOCDBAP小结如图,Rt△ABC中,∠C=90度,因为0<sinA<1,0<sinB<1,tanA>0,tanB>0ABC0<cosA<1,0<cosB<1,所以,对于任何一个锐角α,有0<sinα<1,0<cosα<1,tanα>0,1.分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值.练习解:由
6、勾股定理ABC13122.在Rt△ABC中,如果各边长都扩大2倍,那么锐角A的正弦值、余弦值和正切值有什么变化?ABC解:设各边长分别为a、b、c,∠A的三个三角函数分别为则扩大2倍后三边分别为2a、2b、2cABC3.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求:sinA、cosB的值.ABC8解:4.如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC,(1)求证:AC=BD;(2)若,BC=12,求AD的长。DBCA5.如图,在△ABC中,∠C=90度,若∠ADC
7、=45度,BD=2DC,求tanB及sin∠BAD.DABC=acsinA=小结回顾在Rt△ABC中及时总结经验,要养成积累方法和经验的良好习惯!=bccosA==abtanA=定义中应该注意的几个问题:回味无穷1、sinA、cosA、tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。2、sinA、cosA、tanA是一个比值(数值)。3、sinA、cosA、tanA的大小只与∠A的大小有关,而与直角三角形的边长无关。
此文档下载收益归作者所有