二次函数求最值参数分类讨论的方法

二次函数求最值参数分类讨论的方法

ID:5580259

大小:216.00 KB

页数:4页

时间:2017-12-19

二次函数求最值参数分类讨论的方法_第1页
二次函数求最值参数分类讨论的方法_第2页
二次函数求最值参数分类讨论的方法_第3页
二次函数求最值参数分类讨论的方法_第4页
资源描述:

《二次函数求最值参数分类讨论的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.一般地,对于二次函数y=a(x-m)2+n,x∈[t,s]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。①②③④①表示对称轴在区间[t,s]的左侧,②表示对称轴在区间[t,s]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t,s]的右侧。然后,再根

2、据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论题型一:“动轴定区间”型的二次函数最值例1、求函数在上的最值。分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。解:∴此函数图像开口向上,对称轴x=a①、当a<0时,0距对称轴x=a最近,4距对称轴x=a最远,∴x=0时,=3,x=4时,=19-8a②、当0≤a<2时,a距对称轴x=a最近,4距对称轴x=a最远,∴x=a时,=3-a2,

3、x=4时,=19-8a③、当2≤a<4时,a距对称轴x=a最近,0距对称轴x=a最远,∴x=a时,=3-a2,x=0时,=3④、当4≤a时,4距对称轴x=a最近,0距对称轴x=a最远,∴x=4时,=19-8a,x=0时,=3例2、已知函数在区间上最大值为1,求实数a的值分析:取a=0,a≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在上取不到最大值为1,∴a≠02)若a≠0,则的对称轴为(Ⅰ)若,解得,此时a<0,为最大值,但(Ⅱ)若解得此时距右端点2较远,最大值符

4、合条件(Ⅲ)若解得当时当时综收所述或评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。题型二:“动区间定轴”型的二次函数最值例3.求函数在x∈[a,a+2]上的最值。解:∴此函数图像开口向上,对称轴x=1①当a>1时,a距对称轴x=1最近,a+2距x=1最远,∴当x=a时,=-a2+3,x=a+2时,=a2+2a+3②当0<a≤1时,1距对称轴x=1最近,a+2距离x=1最远,∴当x=1时,=2,x=a+2时,=a2+2a+3③当-1<a≤0时,1距对称轴x=1最近,a

5、距x=1最远,∴当x=1时,=2,x=a时,=a2-2a+3④当a≤-1时,a+2距对称轴x=1最近,a距x=1最远,∴当x=a+2时,=a2+2a+3,x=a时,=a2-2a+3题型三:“动轴动区间”型的二次函数最值例5、已知函数在上恒大于或等于0,其中实数,求实数b的范围.分析:找出函数的对称轴:结合区间讨论或的情况解:∵若时,f(x)在上是减函数∴=即≥0则条件成立令(Ⅰ)当3b+5≤3时.即则函数g(x)在上是增函数∴即解得b≥3或b≤-1∵,∴b≤-1(Ⅱ)当3b+5>3即,若-30b-31≥0解得与矛盾;(2)若时,即-10a-

6、6≥0解得与矛盾;综上述:b≤-1评注:此题属于“动轴动区间”型的二次函数最值,解决的关键是讨论对称轴与定义域区间的位置更便于我们分类类讨论,然后依据口诀,很快就可解决问题。最后,我们在得用分类讨论方法解题中要注意两个原则:一、分类不重不漏;二、一次分类只能按已确定的同一标准进行.二次函数分类讨论补充习题1.已知函数,若,求函数的最小值,并作出最小值的函数图象。2.已知函数,若在区间上恒成立,求实数k的取值范围。3.已知k为非零实数,求二次函数的最小值。4.已知,若函数在上的最大值为,最小值为,又已知函数,求的表达式。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。