欢迎来到天天文库
浏览记录
ID:55767057
大小:967.04 KB
页数:7页
时间:2020-06-06
《黑龙江省哈尔滨市第十九中学校2019-2020学年高一月考数学.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在中,,则角的大小为()A.30°B.45°C.60°D.90°2.已知的面积,则等于()A.-4B.C.D.3.对于实数,下列结论中正确的是()A.若,则B.若,则C.若,则D.若,,则4.设,,,则的大小关系是()A.B.C.D.5.执行右面的程序框图,若输入的分别为1,2,3,则输出的()A.B.C.D.6.在中,,则一定是()A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形7.设是公差为正数的等差数列,若,,则()A.B
2、.C.D.8.已知为等比数列,若,且与的等差中项为,则()A.1B.C.D.9.等差数列{an}中,首项,公差,Sn为其前n项和,则点(n,Sn)可能在下列哪条曲线上()10.已知,函数的最大值是()A.B.4C.D.−411.在等差数列中,,其前项和为,若,则的值等于()A.2011B.-2012C.2014D.-201312.已知正项等比数列满足:,若存在两项,使得,则的最小值为( )A.B.C.D.不存在二、填空题(本大题共4个小题,每小题5分,共20分.)13.两等差数列和,前项和分别为,且则等于14.若实数满足,则的值域是15.已知,,则.
3、16.已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,则使Sn>0的n的最大值为________.三、解答题:(本大题共6个小题,70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线.(1)求角的大小;(2)如果,且,求的值.18.设等比数列的前项和为,已知,求和。19.在中,三边所对应的角分别是,已知成等比数列.(1)若,求角的值;(2)若外接圆的面积为,求面积的取值范围.20.已知等比数列的公比,,是方程的两根.(1)求数列的通项公式;(2)求数列的前项和21.已知
4、不等式ax2-3x+6>4的解集为{x
5、x<1,或x>b}.(1)求a,b;(2)解不等式ax2-(ac+b)x+bc<0(c∈R).22.已知数列的前项和为,数列满足().(1)求数列,的通项公式;(2)求的值.数学答案1.选择题1--5.ABDDC6--10.CBDAD11--12.CA2.填空题13.14.15.16.11C.解答题17.(1)由向量共线有:即,又,所以,则=,即(2)由,得由余弦定理得18.解:∴或由得:或由得:或19.1),又∵成等比数列,得,由正弦定理有,∵,∴,得,即,由知,不是最大边,∴.(2)∵外接圆的面积为,∴的外接圆
6、的半径,由余弦定理,得,又,∴.当且仅当时取等号,又∵为的内角,∴,由正弦定理,得.∴的面积,∵,∴,∴.20.(1)方程的两根分别为2,4,依题意得,.所以,所以数列的通项公式为.(2)由(1)知,所以,①,②由①-②得,即,所以.21.解:(1)因为不等式ax2-3x+6>4的解集为{x
7、x<1,或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系,得解得(2)不等式ax2-(ac+b)x+bc<0,即x2-(2+c)x+2c<0,即(x-2)(x-c)<0.①当c>2时,不等式(x-2)(x-c)<0
8、的解集为{x
9、2<x<c};②当c<2时,不等式(x-2)(x-c)<0的解集为{x
10、c<x<2};③当c=2时,不等式(x-2)(x-c)<0的解集为.22.(1)当时,,所),∴以上各式相加得∵,∴(2)∵∴.
此文档下载收益归作者所有