高考理数 直线方程与圆的方程.pptx

高考理数 直线方程与圆的方程.pptx

ID:55760400

大小:801.81 KB

页数:33页

时间:2020-06-06

高考理数 直线方程与圆的方程.pptx_第1页
高考理数 直线方程与圆的方程.pptx_第2页
高考理数 直线方程与圆的方程.pptx_第3页
高考理数 直线方程与圆的方程.pptx_第4页
高考理数 直线方程与圆的方程.pptx_第5页
资源描述:

《高考理数 直线方程与圆的方程.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§9.1直线方程与圆的方程高考理数(课标专用)考点一 直线方程(2015课标Ⅰ,20,12分,0.308)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.A组  统一命题·课标卷题组五年高考解析(1)由题设可得M(2,a),N(-2,a)或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程

2、为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(5分)(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.(12分)疑难突破要使∠OPM=∠OPN,只需直线PM与直线PN的斜率互为相反数.考点二 圆的方程1.(2016课标Ⅱ,

3、4,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(  )A.-B.-C.D.2答案    A圆的方程可化为(x-1)2+(y-4)2=4,则圆心坐标为(1,4),圆心到直线ax+y-1=0的距离为=1,解得a=-.故选A.思路分析将圆的方程化成标准方程,从而得出圆心坐标,进而利用点到直线的距离公式列出关于a的方程,解方程即可求得a的值.2.(2015课标Ⅰ,14,5分,0.534)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案+y2=解析由已知可得该圆经过椭圆的三个顶点A(4,0)、B(0,2)、C(0,-2).易

4、知线段AB的垂直平分线的方程为2x-y-3=0.令y=0,得x=,所以圆心坐标为,则半径r=4-=.故该圆的标准方程为+y2=.思路分析由已知条件和椭圆的方程分析出圆所经过的顶点的坐标,然后求出圆心坐标,进一步求出圆的半径,从而得到圆的标准方程.解题关键利用圆的几何性质求出圆心坐标是解题的关键.3.(2018课标Ⅱ,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,

5、AB

6、=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解析(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),设A(x1,y1),B(x2,

7、y2).由得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以

8、AB

9、=

10、AF

11、+

12、BF

13、=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),或k=1,因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和

14、圆的方程时,利用待定系数法求解.4.(2017课标Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析本题考查直线与圆锥曲线的位置关系.(1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故

15、圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。