欢迎来到天天文库
浏览记录
ID:55744929
大小:239.50 KB
页数:3页
时间:2020-06-02
《冲刺专题一应用题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、冲刺专题一:应用题专练类型一:函数和导数1.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中32、雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。(Ⅰ)写出y的表达式(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。类型二:数列3.(上海)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的3、累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?4.(湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.(1)求xn+1与xn的关系式;(2)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初4、鱼群的总量保持不变?(不要求证明)(3文科不要求)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论.类型三:三角函数5.如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。(1)设,试将此人按上述路线从A到C所需时间T表示为的函数;并求自变量取值范围;(2)当为何值时,此人从A经E游到5、C所需时间T最小,其最小值是多少?6.如图,在半径为30cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上。(1)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形形罐子体积最大?并求最大体积.类型四:解几7.(广东卷)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合.将矩形折叠,使A点6、落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.8.在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形的三边、、由长6分米的材料弯折而成,边的长为分米();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点到边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点到边的距离为.(1)试分别求出函数、的表达式;(2)要使得点到边的距离最大,应选用哪一种曲7、线?此时,最大值是多少?类型五:概率9.某校决定为本校上学时间不少于30分钟的学生提供校车接送服务。为了解学生上学所需时间,从全校600名学生中抽取50人统计上学时间(单位:分钟),现对600人随机编号为001,002,......600。抽取50位学生上学时间均不超过60分钟,将时间按如下方式分成六组,第一组上学时间在[0,10),第二组上学时间在[10,20),......第六组上学时间在[50,60](单位:分钟)得到各组人数的频率分布直方图。如下图。(Ⅰ)若抽取的50个样本是用系统抽样的方法得到,且第一段的号码为008、6,则第五段抽取的号码是什么?(Ⅱ)若从50个样本中属于第4组和第6组的所有人中随机抽取2人,设他们上学时间分别为a、b,求满足9、a-b10、>10的事件的概率;(Ⅲ)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?10.设甲、乙、丙三台机器是否需要照顾相互
2、雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。(Ⅰ)写出y的表达式(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。类型二:数列3.(上海)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的
3、累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?4.(湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.(1)求xn+1与xn的关系式;(2)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初
4、鱼群的总量保持不变?(不要求证明)(3文科不要求)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论.类型三:三角函数5.如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。(1)设,试将此人按上述路线从A到C所需时间T表示为的函数;并求自变量取值范围;(2)当为何值时,此人从A经E游到
5、C所需时间T最小,其最小值是多少?6.如图,在半径为30cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上。(1)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形形罐子体积最大?并求最大体积.类型四:解几7.(广东卷)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合.将矩形折叠,使A点
6、落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.8.在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形的三边、、由长6分米的材料弯折而成,边的长为分米();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点到边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点到边的距离为.(1)试分别求出函数、的表达式;(2)要使得点到边的距离最大,应选用哪一种曲
7、线?此时,最大值是多少?类型五:概率9.某校决定为本校上学时间不少于30分钟的学生提供校车接送服务。为了解学生上学所需时间,从全校600名学生中抽取50人统计上学时间(单位:分钟),现对600人随机编号为001,002,......600。抽取50位学生上学时间均不超过60分钟,将时间按如下方式分成六组,第一组上学时间在[0,10),第二组上学时间在[10,20),......第六组上学时间在[50,60](单位:分钟)得到各组人数的频率分布直方图。如下图。(Ⅰ)若抽取的50个样本是用系统抽样的方法得到,且第一段的号码为00
8、6,则第五段抽取的号码是什么?(Ⅱ)若从50个样本中属于第4组和第6组的所有人中随机抽取2人,设他们上学时间分别为a、b,求满足
9、a-b
10、>10的事件的概率;(Ⅲ)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车?10.设甲、乙、丙三台机器是否需要照顾相互
此文档下载收益归作者所有