不等式的证明方法习题精选精讲

不等式的证明方法习题精选精讲

ID:5574099

大小:442.00 KB

页数:6页

时间:2017-12-19

不等式的证明方法习题精选精讲_第1页
不等式的证明方法习题精选精讲_第2页
不等式的证明方法习题精选精讲_第3页
不等式的证明方法习题精选精讲_第4页
不等式的证明方法习题精选精讲_第5页
资源描述:

《不等式的证明方法习题精选精讲》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、不等式的证明不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。注意的变式应用。常用(其中)来解决有关根式不等式的问题。1、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。1已知a,b,c均为正数,求证:证明:∵a,b均为正数,∴同理,三式相加,可得∴2、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明

2、的结论。2a、b、,,求证:证:∴3设、、是互不相等的正数,求证:证:∵∴∵同理:∴4知a,b,c,求证:证明:∵即,两边开平方得同理可得三式相加,得5且,证:。证:6已知策略:由于证明:。3、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。7已知、、为正数,求证:证:要证:只需证:即:∵成立∴原不等式成立8且,求证。证:即:∵即∴原命题成立4、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。9,,求证:。证明:令左∴

3、10:,求证:证:由设,∴∴11知a>b>c,求证:证明:∵a-b>0,b-c>0,a-c>0∴可设a-b=x,b-c=y(x,y>0)则a-c=x+y,原不等式转化为证明即证,即证∵∴原不等式成立(当仅x=y当“=”成立)12知1≤x+y≤2,求证:≤x-xy+y≤3.证明:∵1≤x+y≤2,∴可设x=rcos,y=rsin,其中1≤r≤2,0≤<.∴x-xy+y=r-rsin=r(1-sin),∵≤1-sin≤,∴r≤r(1-sin)≤r,而r≥,r≤3∴≤x-xy+y≤3.13已知x-2xy+y≤2,求证:

4、x+y

5、≤

6、.证明:∵x-2xy+y=(x-y)+y,∴可设x-y=rcos,y=rsin,其中0≤r≤,0≤<.∴

7、x+y

8、=

9、x-y+2y

10、=

11、rcos+2rsin

12、=r

13、sin(+ractan)

14、≤≤.14解不等式>解:因为=6,故可令=sin,=cos,∈[0,]则原不等式化为sin-cos>所以sin>+cos由∈[0,]知+cos>0,将上式两边平方并整理,得48cos2+4cos-23<0解得0≤cos<所以x=6cos2-1<,且x≥-1,故原不等式的解集是{x

15、-1≤x<.15:-1≤-x≤.证明:∵1-x≥0,∴-1

16、≤x≤1,故可设x=cos,其中0≤≤.则-x=-cos=sin-cos=sin(-),∵-≤-≤,∴-1≤sin(-)≤,即-1≤-x≤.增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a>b>c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.16a,bR,且a+b=1,求证:(a+2)+(b+2)≥.证明:∵a,bR,且a+b=1,∴设a=+t,b=-t,(tR)则(a+2)+(b+2)=(+t+2)+(-t+2)=(t+)+

17、(t-)=2t+≥.∴(a+2)+(b+2)≥.利用“1”的代换型17策略:做“1”的代换。证明:.5、反证法反证法的思路是“假设矛盾肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。18若p>0,q>0,p+q=2,求证:p+q≤2.证明:反证法假设p+q>2,则(p+q)>8,即p+q+3pq(p+q)>8,∵p+q=2,∴pq(p+q)>2.故pq(p+q)>2=p+q=(p+q)(p-pq+q),又p>0,q>0p+q>0,∴pq>p-pq+q,即(p-q)<0,矛盾.故假设p

18、+q>2不成立,∴p+q≤2.19已知、、(0,1),求证:,,,不能均大于。证明:假设,,均大于∵,均为正∴同理∴∴不正确∴假设不成立∴原命题正确20已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于。证明:假设三式同时大于∵0<a<1∴1-a>0∴21、、,,,,求证:、、均为正数。证明:反证法:假设、、不均为正数又∵、、两负一正不妨设,,又∵∴同乘以∴即,与已知矛盾∴假设不成立∴、、均为正数6、放缩法放缩时常用的方法有:1去或加上一些项2分子或分母放大(或缩小)3用函数单调性放缩4用

19、已知不等式放缩22已知a、b、c、d都是正数,求证:1<+++<2.证明:∵<<,<<,<<,<<,将上述四个同向不等式两边分别相加,得:1<+++<2.23,求证:。证明:∵∴ 判别式法24A、B、C为的内角,、、为任意实数,求证:。证明:构造函数,判别式法令为开口向上的抛物线无论、为何

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。