参数方程应用总结.doc

参数方程应用总结.doc

ID:55688845

大小:313.50 KB

页数:12页

时间:2020-05-24

参数方程应用总结.doc_第1页
参数方程应用总结.doc_第2页
参数方程应用总结.doc_第3页
参数方程应用总结.doc_第4页
参数方程应用总结.doc_第5页
资源描述:

《参数方程应用总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、参数方程应用专题1、圆的参数方程的应用圆的参数方程为(为参数)一、求最值为圆上一点(1)求的最值(2)求的最值(3)A,B为定点,求的最值。例1已知点P(x,y)在圆上,(1)求的最大值和最小值。(2)求的最值(3)的最值。练习1、已知实数满足,求的最值。2、在△ABC中,∠A,∠B,∠C所对的边分别为a、b、c,且c=10,,P为△ABC的内切圆的动点,求点P到顶点A、B、C的距离的平方和的最大值和最小值。CxyOAB图1二、求轨迹例2在圆上有定点A(2,0),及两个动点B、C,且A、B、C按逆时针方向排列,∠BAC=,求△ABC

2、的重心G(x,y)的轨迹方程。三、求范围例3已知点P(x,y)是圆上任意一点,欲使不等式x+y+c≥0恒成立,求c的取值范围。四、求斜率Oxy(2,1)图2例4求函数的最大值和最小值。2、椭圆的参数方程的应用的参数方程为(为参数)一、求椭圆的内接多边形的周长及面积例1求椭圆的内接矩形的面积及周长的最大值。二、求轨迹例2已知点A在椭圆上运动,点B(0,9)、点M在线段AB上,且,试求动点M的轨迹方程。三、求最值P(X,Y)为椭圆上一点(1)求的最值(2)求的最值(3)P为椭圆上一点,A,B为定点,求的最值。(5)例3设点P(x,y)在

3、椭圆,(1)试求点P到直线的距离d的最大值和最小值。(2)已知,求的最值。(3)求的最值。(4)已知求的最值。3、已知椭圆有一内接矩形ABCD,求矩形ABCD的最大面积。4.动点P(x,y)在曲线上变化,求2x+3y的最大值和最小值56,7,设直线,交椭圆于A、B两点,在椭圆C上找一点P,使面积最大。3,直线的参数方程过定点、倾斜角为的直线的参数方程为(t为参数)(1)的几何意义是直线上点M到M0的距离。(2)若t=0,则点与点M重合.由此,易得参数t具有如下的性质:若直线上两点A、B所对应的参数分别为,则性质一:A、B两点之间的距

4、离为,特别地,A、B两点到的距离分别为性质二:A、B两点的中点所对应的参数为,若是线段AB的中点,则,反之亦然。一求定点到过定点的直线与其它曲线的交点的距离例1.设直线经过点(1,5),倾斜角为,1)求直线和直线的交点到点的距离;2)求直线和圆的两个交点到点的距离的和与积.二求直线与曲线相交的弦长例2过抛物线的焦点作斜角为的直线与抛物线交于A、B两点,求

5、AB

6、.例3已知直线L:x+y-1=0与抛物线y=交于A,B两点,求线段AB的长和点M(-1,2)到A,B两点的距离之积.点评:本题的解答中,为了将普通方程化为参数方程,先判定点M

7、(-1,2)在直线上,并求出直线的倾斜角,这样才能用参数t的几何意义求相应的距离.这样的求法比用普通方程求出交点坐标,再用距离公式求交点距离简便一些.三、求解中点问题例1,已知经过点P(2,0),斜率为的直线和抛物线相交于A,B两点,设线段AB的中点为M,求点M的坐标.点评:在直线的参数方程中,当t>0,则的方向向上;当t<0,则的方向向下,所以A,B中点的M所对应的t的值等于,这与二点之点的中点坐标有点相同.例2.经过点P(−1,2),倾斜角为的直线l与圆x2+y2=9相交于A,B两点,求PA+PB和PA·PB的值。点评:解决本题

8、的关键一是正确写出直线的参数,二是注意两个点对应的参数的符号的异同。练习一、1已知:直线过点,斜率为,直线和抛物线相交于两点,设线段的中点为,求(1)两点间的距离。(2)点的坐标。(3)线段的长。2.3.直线,则AB的中点坐标为__________。4.(1)写出经过点,倾斜角是的直线l的参数方程;(2)利用这个参数方程,求这条直线l与直线的交点到点M0的距离。(3)求这条直线l和圆的两个交点到点M0的距离的和与积。5求经过点(1,1),倾斜角为135°的直线截椭圆所得的弦长。6.已知双曲线G的中心在原点,它的渐近线方程是.过点作斜

9、率为的直线,使得和交于两点,和轴交于点,并且点在线段上,又满足.求双曲线的方程;7.已知ll,l2是过点P()的两条互相垂直的直线,且ll,l2与双曲线y2-x2=1各有两个交点,分别为A1,B1和A2,B2.若

10、A1B1

11、

12、A2B2

13、,求ll,l2的方程.8.已知直线过点,且与轴轴的正半轴分别交于A,B两点,求的值为最小值时的直线的方程.9.下表是一条直线上的点和对应参数的统计值参数26横坐标10纵坐标67根据数据,可知直线的参数方程为,直线被圆截得的弦长为练习二、练习三轨迹问题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。