【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt

【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt

ID:55624363

大小:1.77 MB

页数:26页

时间:2020-05-21

【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt_第1页
【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt_第2页
【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt_第3页
【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt_第4页
【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt_第5页
资源描述:

《【数学】3.4 生活中的优化问题举例 课件(人教A版选修1-1).ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、人教A版选修1-1第三章导数及其应用第四节生活中的优化问题举例生活中经常会遇到求什么条件下可使用料最省,利润最大,效率最高等问题,这些问题通常称为优化问题.这往往可以归结为求函数的最大值或最小值问题.其中不少问题可以运用导数这一有力工具加以解决.知识回顾:如何用导数来求函数的最值?一般地,若函数y=f(x)在[a,b]上的图象是一条连续不断的曲线,则求f(x)的最值的步骤是:(1)求y=f(x)在[a,b]内的极值(极大值与极小值);(2)将函数的各极值与端点处的函数值f(a)、f(b)比较,其中最大

2、的一个为最大值,最小的一个为最小值.特别地,如果函数在给定区间内只有一个极值点,则这个极值一定是最值。规格(L)21.250.6价格(元)5.14.52.5问题情景一:饮料瓶大小对饮料公司利润的影响下面是某品牌饮料的三种规格不同的产品,若它们的价格如下表所示,则(1)对消费者而言,选择哪一种更合算呢?(2)对制造商而言,哪一种的利润更大?例1、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制

3、造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢?r(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗-1.07p解:∵每个瓶的容积为:∴每瓶饮料的利润:解:设每瓶饮料的利润为y,则r(0,2)2(2,6]f'(r)0f(r)-+减函数↘增函数↗∵f(r)在(2,6]上只有一个极值点∴由上表可知,f(2)=-1.07p为利润的最小值-1.07p例1、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,

4、制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最小呢?解:设每瓶饮料的利润为y,则∵当r∈(0,2)时,而f(6)=28.8p,故f(6)是最大值答:当瓶子半径为6cm时,每瓶饮料的利润最大,当瓶子半径为2cm时,每瓶饮料的利润最小.例1、某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8pr2分,其中r是瓶子的半径,单位是厘米,已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制造的瓶子的最大半径为6cm,则每瓶饮料的利润何时最大,何时最

5、小呢?解决优化问题的方法之一:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有力的工具,其基本思路如以下流程图所示优化问题用函数表示的数学问题用导数解决数学问题优化问题的答案问题情景二:汽油使用效率何时最高我们知道,汽油的消耗量w(单位:L)与汽车的速度v(单位:km/h)之间有一定的关系,汽车的消耗量w是汽车速度v的函数.根据实际生活,思考下面两个问题:(1)是不是汽车的速度越快,汽油的消耗量越大?(2)当汽车的行

6、驶路程一定时,是车速快省油还是车速慢的时候省油呢?一般地,每千米路程的汽油消耗量越少,我们就说汽油的使用效率越高(即越省油)。若用G来表示每千米平均的汽油消耗量,则这里的w是汽油消耗量,s是汽车行驶的路程如何计算每千米路程的汽油消耗量?例2、通过研究,人们发现汽车在行驶过程中,汽油的平均消耗率g(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度v(单位:km)之间,有如图的函数关系g=f(v),那么如何根据这个图象中的数据来解决汽油的使用效率最高的问题呢?v(km/h)g(L/h)O12090

7、305051015分析:每千米平均的汽油消耗量,这里w是汽油消耗量,s是汽车行驶的路程∵w=gt,s=vtP(v,g)的几何意义是什么?如图所示,表示经过原点与曲线上的点P(v,g)的直线的斜率k所以由右图可知,当直线OP为曲线的切线时,即斜率k取最小值时,汽油使用效率最高例3、经统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:若已知甲、乙两地相距100千米。(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油为升;(II)若速

8、度为x千米/小时,则汽车从甲地到乙地需行驶小时,记耗油量为h(x)升,其解析式为:.(III)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?17.5例3、经统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:若已知甲、乙两地相距100千米。(III)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解:设当汽车以xkm/h的速度行驶时,从甲地到乙地的耗油量为h(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。