双曲线几何性质.ppt

双曲线几何性质.ppt

ID:55602114

大小:929.00 KB

页数:41页

时间:2020-05-20

双曲线几何性质.ppt_第1页
双曲线几何性质.ppt_第2页
双曲线几何性质.ppt_第3页
双曲线几何性质.ppt_第4页
双曲线几何性质.ppt_第5页
资源描述:

《双曲线几何性质.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、2.4双曲线的简单几何性质第二课时关于x轴、y轴、原点对称图形方程范围对称性顶点离心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)F1(-c,0)F2(c,0)F1(-c,0)F2(c,0)关于x轴、y轴、原点对称A1(-a,0),A2(a,0)渐进线无关于x轴、y轴、原点对称图形方程范围对称性顶点离心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)关于x轴、y轴、原点对称渐进线..yB2A1A2B1xOF2F1x

2、B1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922=-xy1342222=-xy53422=+45==ace例题讲解1、“共渐近线”的双曲线λ>0表示焦点在x轴上的双曲线;λ<0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为(2)与双曲线

3、有共同焦点的双曲线方程表示为复习练习:2.求与椭圆有共同焦点,渐近线方程为的双曲线方程。3、求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。例1、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).A′A0xC′CB′By131225例题讲解例2、点M(x,y)与定点F(5,0),的距离和它到定直线 :的距离的比是常数,求点M的轨迹.y0dxyOlF引例:点M(x,y)与定点F(

4、c,0)的距离和它到定直线的距离比是常数(c>a>0),求点M的轨迹.M解:设点M(x,y)到l的距离为d,则即化简得(c2-a2)x2-a2y2=a2(c2-a2)设c2-a2=b2,(a>0,b>0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.b2x2-a2y2=a2b2即就可化为:M点M的轨迹也包括双曲线的左支.一、第二定义双曲线的第二定义平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e>1)的点的轨迹是双曲线。定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的

5、离心率.对于双曲线是相应于右焦点F(c,0)的右准线类似于椭圆是相应于左焦点F′(-c,0)的左准线xyoFlMF′l′点M到左焦点与左准线的距离之比也满足第二定义.想一想:中心在原点,焦点在y轴上的双曲线的准线方程是怎样的?xyoF相应于上焦点F(c,0)的是上准线相应于下焦点F′(-c,0)的是下准线F′例3、已知双曲线F1、F2是它的左、右焦点.设点A(9,2),在曲线上求点M,使的值最小,并求这个最小值.xyoF2MA由已知:解:a=4,b=3,c=5,双曲线的右准线为l:作MN⊥l,AA1⊥l,垂足分别是N,

6、A1,NA1当且仅当M是AA1与双曲线的交点时取等号,令y=2,解得:归纳总结1.双曲线的第二定义平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e>1)的点的轨迹是双曲线。定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率。2.双曲线的准线方程对于双曲线准线为对于双曲线准线为注意:把双曲线和椭圆的知识相类比.思考:点M(x0,y0)和双曲线什么条件下点M在双曲线内部?双曲线外部?1.点P在双曲线内⇔2.点P在双曲线上⇔3.点P在双曲线外⇔内外外F1oF2xy椭圆与直线的

7、位置关系及判断方法判断方法∆<0∆=0∆>0(1)联立方程组(2)消去一个未知数(3)复习:相离相切相交二、直线与双曲线的位置关系1)位置关系种类XYO种类:相离;相切;相交(0个交点,一个交点,一个交点或两个交点)2)位置关系与交点个数XYOXYO相离:0个交点相交:一个交点相交:两个交点相切:一个交点(b2-a2k2)x2-2kma2x+a2(m2+b2)=01.二次项系数为0时,L与双曲线的渐近线平行或重合。重合:无交点;平行:有一个交点。2.二次项系数不为0时,上式为一元二次方程,Δ>0直线与双曲线相交(两个交

8、点)Δ=0直线与双曲线相切Δ<0直线与双曲线相离②相切一点:△=0③相离:△<0注:①相交两点:△>0同侧:>0异侧:<0一点:直线与渐进线平行3)判断直线与双曲线位置关系的操作程序把直线方程代入双曲线方程得到一元一次方程得到一元二次方程直线与双曲线的渐进线平行相交(一个交点)计算判别式>0=0<0相交相切相离特别注意直线与双曲线

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。