欢迎来到天天文库
浏览记录
ID:55564358
大小:1.23 MB
页数:27页
时间:2020-05-17
《北师大版九年级下册数学《3.7 切线长定理》课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、*3.7切线长定理导入新课讲授新课当堂练习课堂小结第三章圆北师大版九年级下册数学教学课件1.理解切线长的概念;2.掌握切线长定理,初步学会运用切线长定理进行计算与证明.(重点)学习目标POO.PBAAB问题1通过前面的学习,我们了解到如何过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?问题2过圆外一点P作圆的切线,可以作几条?请欣赏小颖同学的作法(如右下图所示)!直径所对的圆周角是直角.导入新课复习引入P1.切线长的定义:经过圆外一点作圆的切线,这点和切点之间的
2、线段的长叫作切线长.AO①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2.切线长与切线的区别在哪里?讲授新课切线长的定义一切线长定理二合作探究BPOA问题在透明纸上画出下图,设PA,PB是圆O的两条切线,A,B是切点,沿直线OP对折图形,你能猜测一下PA与PB,∠APO与∠BPO分别有什么关系吗?猜测PA=PB,∠APO=∠BPO推导与验证如图,连接OA,OB.∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90
3、°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPBBPOA切线长定理:过圆外一点引所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.PA、PB分别切☉O于A、BPA=PB∠OPA=∠OPB几何语言:切线长定理为证明线段相等、角相等提供了新的方法.注意要点归纳BPOABPOA1.PA、PB是⊙O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=;(2)若∠BPA=60°,则OP=.56练一练2.PA、PB是☉O的两条
4、切线,A、B为切点,直线OP交☉O于点D、E,交AB于C.(1)写出图中所有的垂直关系;OA⊥PA,OB⊥PB,AB⊥OP.(2)写出图中与∠OAC相等的角;BPOACED∠OAC=∠OBC=∠APC=∠BPC.△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP.(4)写出图中所有的等腰三角形.△ABP△AOB(3)写出图中所有的全等三角形;BPOACEDOPABCED解析:连接OA、OB、OC、OD和OE.∵PA、PB是☉O的两条切线,点A、B是切点,∴PA=PB=7.∠PAO=∠PB
5、O=90°.∠AOB=360°-∠PAO-∠PBO-∠P=140°.⑴△PDE的周长是;例1如图,PA、PB是☉O的两条切线,点A、B是切点,在弧AB上任取一点C,过点C作☉O的切线,分别交PA、PB于点D、E.已知PA=7,∠P=40°.则⑵∠DOE=____.典例精析又∵DC、DA是☉O的两条切线,点C、A是切点,∴DC=DA.同理可得CE=EB.l△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.OPABCED∵OA=OC,OD=OD,∴△AOD≌△COD,∴∠DOC=
6、∠DOA=∠AOC.同理可得∠COE=∠COB.∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=70°.切线长问题辅助线添加方法(3)连接圆心和圆外一点.(2)连接两切点;(1)分别连接圆心和切点;方法归纳例2△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE=(9-x)cm,BF=BD=AB-AF=(13-x)cm.想一想:图中你能找出哪些相等的
7、线段?理由是什么?ACBEDFO由BD+CD=BC,可得(13-x)+(9-x)=14,∴AF=4cm,BD=9cm,CE=5cm.方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得x=4.ACBEDFO例3如图,Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为Rt△ABC的内切圆.求:Rt△ABC的内切圆的半径r.∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD解:设Rt△ABC的内切圆与三边相切于D、E、F,连接OD、O
8、E、OF,则OD⊥AC,OE⊥BC,OF⊥AB.B·ACEDFO设AD=x,BE=y,CE=r则有x+r=by+r=ax+y=c解得r=a+b-c2B·ACEDFO设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的内切圆的半径r=或r=(前面课时已证明).a+b-c2aba+b+c知识拓展20°41.如图,PA、PB是⊙O的两条切线,切点分别是A、B,如果AP=4,∠APB=40°,则∠APO=,PB=.BPOA第1题当堂练习110°2.如图,已知点O是△ABC的内心,且∠ABC=60°
此文档下载收益归作者所有