欢迎来到天天文库
浏览记录
ID:38880462
大小:158.50 KB
页数:7页
时间:2019-06-20
《3.7切线长定理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、3.7切线长定理教学设计课题:北师大版九年级数学下册3.7切线长定理课型:新授课一、学情分析学生已经经历了利用轴对称图形的性质证明垂径定理的经验,和尺规作图等动手操作能力,经历了对数学问题进行观察、实验、猜测、计算、推理、验证等活动过程.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的动手实践、自主探索与合作交流的能力.二、教材分析本节课是在学习了切线的性质和判定的基础之上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识.体现了图形的认识、图形的变换、图形
2、的证明的有机结合.在习题和内切圆的计算中体现了把复杂问题转化为简单问题后解决问题,从而滲透转化思想和方程思想,提高应用意识.切线长定理的探究,通过设计让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性.应用了“实验几何——论证几何”的探究方法,并初步建立了由动手操作抽象出数学条件进而解决问题的意识.让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由
3、直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程.它也是为证明线段,角相等,弧相等,垂直关系等提供了理论依据.(一)教学目标知识与技能目标:使学生理解切线长定义,使学生掌握切线长定理,并能初步运用.过程与方法目标:通过本节教学,进一步培养学生的动手操作能力和创新意识;学生在猜想、探索、验证切线长定理活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.情感态度与价值观目标:通过分析问题、解决问题的过程,激发学生学数学的兴趣,使学生积极参与、体验成功.(二)教学重难点重点、难点:了解切线长的
4、概念,理解切线长定理,并能熟练运用切线长定理进行解题和证明.三、教学设计分析本节课设计了六个教学环节:一、创设情景,引入新课→二、合作学习,探究新知→三、应用新知,体验成功→四、梳理小结,盘点收获→五、延伸思考,提升层次→六、推荐作业,巩固拓展.四、教学过程(一)知识回顾1、直线和圆有什么位置关系?;2、切线的判定:(1)经过半径的且于半径的直线是圆的切线;(2)如果圆心到直线的距离,则这条直线是圆的切线;3、切线的性质定理:圆的切线;4、过⊙O外任一点P可以作条切线.(二)合作学习,探究新知探究合作一:切线长的定义如图
5、,PA、PB是⊙O的两条切线,A、B为切点.(1)这个图形是轴对称图形吗?如果是,对称轴是什么?(2)在这个图形中你能找到相等的线段吗?如果能,说说你的理由.过圆外一点画圆的切线,叫做这点到圆的切线长.师强调:1、板书定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段的长度叫做圆的切线长2、剖析定义:(1)找出中心词,把定义进行缩句.(线段的长叫做切线长)(2)定义中的“线段”具有什么特征?①在圆的切线上;②两个端点一个是切点,一个是圆外已知点.3、在图形中辨别:(1)已知:如图1,PC和⊙O相切于点A,点P到⊙O
6、的切线长可以用哪一条线段的长来表示?(线段PA)(2)已知:如图2,PA和PB分别与⊙O相切于点A、B,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)(3)如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?(4)既然点P到⊙O的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学.探究合作二:探究切线长定理1、探索问题1:从⊙O外一点P引⊙O的两条切线,切
7、点分别为A、B,那么线段PA和PB之间有何关系?探索步骤:(1)根据条件画出图形;(2)度量线段PA和PB的长度;(3)猜想:线段PA和PB之间的关系;(4)寻找证明猜想的途径;(5)在图3中还能得出哪些结论?并把它们归类.(6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由.活动目的:定理教学的方式是学生自主探索,相互交流相结合.首先出示探索步骤的前三个,等学生猜想出结论后,再明确仅凭观察、度量、利用圆的对称性,通过折叠,猜想并不能说明结论的正确性,还需证明结论的正确性,同时激励学生寻找证明猜想的途径.之后,
8、再让学生探索更多的结论,并由(6)得出定理.定理的剖析以对话形式进行.在整个过程中,教师相应地进行板书.此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性.然后,
此文档下载收益归作者所有