欢迎来到天天文库
浏览记录
ID:55486597
大小:458.00 KB
页数:17页
时间:2020-05-14
《奥数列方程解应用题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.列方程解应用题列方程解应用题的一般步骤是: ①审清题意,弄清楚题目意思以及数量之间的关系,; ②合理设未知数x,设未知数的方法有两种:问什么设什么(直接设未知数),间接设未知数; ③依题意确定等量关系,根据等量关系列出方程; ④解方程; ⑤将结果代入原题检验。概括成五个字就是:“审、设、列、解、验”.列方程解应用题的关键是找到正确的等量关系。寻找等量关系的常用方法是:根据题中“不变量”找等量关系。一些基本概念:(1)像4x+2=9这样的的等式,只含有一个未知数x,而且未知数x的指数为1的方程叫做一元一次方程;(2)像2x+y=8这样的的等式,含有两个未知数x、y,而且未
2、知数的指数都为1的方程叫做二元一次方程;把两个二元一次方程用“﹛”写在一起,就组成了一个二元一次方程组;(3)如果有两个未知数,一般需要两个方程才能求出唯一解,如果有三个未知数,一般需要三个方程才能求出唯一解.如果有更多的未知数,可借助今天学习的解题思路来类推出解法.类型Ⅰ:列简易方程解应用题【例1】(难度系数:★★)解下列方程:(1)(2)(3)(4)(5)(6)(7)(8)分析:(1)以下各题不再写检验步骤,请教师强调学生答案要检验.(2)(3)..(4)(5)(6)请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一
3、项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。(7)法1:加减消元法(8)法2:代入法.建议教师将(7)、(8)贯穿起来,让学生深刻体会:(1)代入法,以及代入法在什么情况下好用;(2)加减消元法,其本质是找(制造)到一个未知数的系数相等,再利用等式加减得到结果.【例1】(难度系数:★★)汽车以每小时72公里的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以340米/秒计算)分析:72千米/小时=72000米/3600秒=2米/秒,设听到回音时汽车离山谷x米,根据题意可得:340×4=2x+2×4,解得x=676(米)
4、.【例2】(小数报数学竞赛初赛)(难度系数:★★★)用绳子测井深,绳子两折时,余60厘米,绳子三折时,差40厘米,求绳长和井深?分析:法1:设井深是x厘米,则有:2x+60×2=3x-40×3,井深x=240(厘米),绳长600厘米;法2:设绳长是y厘米,则有:【例3】(难度系数:★★)箱子里面有红、白两种玻璃球,红球数比白球数的3倍多两个,每次从箱子里取出7个白球,15个红球.如果经过若干次以后,箱子里只剩下3个白球,53个红球,那么,箱子里原有红球比白球多多少个?分析:设取球的次数为x次.那么原有的白球数为(3+7x),红球数为(53+15x).再根据题中的第一个条件:53+
5、15x=3×(3+7x)+2,解得x=7,所以原有红球158个,原有白球52个,红球比白球多106个.此题用逆向思维较难求解,但是用方程则思路非常清晰简单.【例4】(难度系数:★★★)小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100.”..那么聪明的你知道一共有多少只猩猩吗?分析:设动物园有x只猩猩,依题意有:(x+x)+(x-x)+x×x+x÷x=100,即2x+0+x×x+1=100,亦即x(x+2)=99,又x整数,只有唯一解x=9.【例1】
6、(难度系数:★★★)从甲地到乙地的公路,只有上坡路和下坡路,没有平路。一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?分析:从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路。设从甲地到乙地的上坡路为x千米,下坡路为y千米,依题意得解得x=140,y=70,所以甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【例2】(难度系数:★★★★)幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人.老
7、师给小孩分枣,甲班每个小孩比乙班每个小孩少分了3个枣,乙班每个小孩比丙班每个小孩少分了5个枣,结果甲班比乙班总共多分了3个枣,乙班比丙班总共多分了5个枣,三个班总共分了多少个枣?分析:法1:设甲班有x人,则乙班有(x-4)人,丙班有(x-8)人;甲班每人分得y个枣,则乙班每人分得(y+3)个,丁班每人分得(y+8)个.那么有甲班共分得xy个枣,乙班共分得(x-4)(y+3)枣,丙班共分得(x-8)(y+8)个枣.,整理有,解得.因此,甲班小孩19人,每个小孩分枣12个;乙班小孩1
此文档下载收益归作者所有