高中数学必修四导学案1.3.1 诱导公式1—4

高中数学必修四导学案1.3.1 诱导公式1—4

ID:5548506

大小:25.50 KB

页数:7页

时间:2017-12-18

高中数学必修四导学案1.3.1 诱导公式1—4_第1页
高中数学必修四导学案1.3.1 诱导公式1—4_第2页
高中数学必修四导学案1.3.1 诱导公式1—4_第3页
高中数学必修四导学案1.3.1 诱导公式1—4_第4页
高中数学必修四导学案1.3.1 诱导公式1—4_第5页
资源描述:

《高中数学必修四导学案1.3.1 诱导公式1—4》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高中数学必修四导学案1.3.1诱导公式1—4131诱导公式1—4【学习目标】1借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。【新知自学】知识回顾:1、背诵30度、4度、60度角的正弦、余弦、正切值;2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。新知梳理:问题1:我们知道,任一角都可以转化为终边在

2、内的角,如何进一步求出它的三角函数值?我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决。那么如何实现这种转化呢?探究1诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:(公式一)诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。注意:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成,是不对的问题2:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?除此之外还有一些角,它们的终边具有某种特

3、殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?探究2:若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:(公式二)特别地,角与角的终边关于轴对称,故有(公式三)特别地,角与角的终边关于原点对称,故有(公式四)所以,我们只需研究的同名三角函数的关系即研究了的关系了。说明:①公式中的指任意角;②在角度制和弧度制下,公式都成立;③记忆方法:“函数名不变,符号看象限”;方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:①;②;③。可概括为:”

4、(有时也直接化到锐角求值)。对点练习:1、tan690°的值为(  )A.-33  B333D.-32、已知sin(π+α)=3,且α是第四象限角,则s(α-2π)的值是(  )A.-4  B4 .±4 D33已知sinπ7=,则s2π7的值等于(  )A.B.-1-2D.-1-24设s(-80°)=,那么tan100°=(  )A1-2B.-1-21-2D.-1-2若sinπ6-θ=33,则sin7π6-θ=________【合作探究】典例精析:例1:求下列三角函数值:(1);(2).变式练习:1:sin2π,s6π,tan7π,从小到大的顺序是___

5、_____.例2、化简.变式练2::化简:(1)sin()s(-π)tan(2π+);(2)sin2(α+π)s(π+α)tan(π-α)s3(-α-π)tan(-α-2π)【堂小结】【当堂达标】1.若,则的取值集合为()A.B..D.2.已知那么()A.B..D.3.设角的值等于()A.B.-.D.-4.当时,的值为()A.-1B.1.±1D.与取值有关.设为常数),且那么()A.1B.3.D.76.已知则【时作业】1.已知,则值为()AB—D—2.s(+α)=—,<α<,sin(-α)值为()ABD—3.化简:得()ABD±4.已知,,那

6、么的值是()ABD.如果且那么的终边在第象限6.求值:2sin(-1110&rd;)-sin960&rd;+=      .7.设,求的值.8.已知方程sin(៹᠄3ɤ)=2s(៹᠄4ɤ),求的值。【延伸探究】1、设f(x)=asin(πx+α)+bs(πx+β),其中a,b,α,β∈R,且ab≠0,α≠π(∈Z).若f(2009)=,则f(2010)等于(  )A.4   B.3   .-  D.2、设tan(α+87π)=求证:sin(17π+α)+3s(α-137π)sin(20π

7、7-α)-s(α+227π)=+3+1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。