欢迎来到天天文库
浏览记录
ID:5542541
大小:42.00 KB
页数:19页
时间:2017-12-17
《第1章解三角形复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第1章解三角形复习教案第1章解三角形复习教案教学设计整体设计教学分析 首先了解新标对本的定位.解三角形作为三角系列的最后一,突出了基础性、选择性与时代性.本重在研究三角形边角之间的数量关系,如正弦定理、余弦定理等.正弦定理、余弦定理更深刻地反映了三角形的度量本质,成为解三角形的主要工具.本的数学思想方法是一条看不见的暗线,数学思想方法是数学的精髓.在初中,教科书着重从空间形式定性地讨论三角形中线段与角之间的位置关系,本主要是定量地揭示三角形边、角之间的数量关系,从而较清晰地解决了三角形的确定性问题.本对两个定理的推导引
2、入中十分强调这一量化思想方法,并选择了更有教育价值的正弦定理和余弦定理的证明方法.本中融合了学生已学过的大部分几何知识,将解三角形作为几何度量问题处理,突出几何背景,为学生理解数学中的量化思想,进一步学习数学奠定了基础.三维目标 1.熟练掌握三角形中的边角关系.2.通过本节学习,要求对全有一个清晰的认识,熟练掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力.3.注重思维引导及方法提炼,展现学生的主体作用,关注情感的积极体
3、验,加强题后反思环节,提升习题效率,激发学生钻研数学的热情、兴趣和信心.重点难点 教学重点:掌握正、余弦定理及其推导过程并且能用它们解斜三角形.教学难点:正弦定理、余弦定理的灵活运用,及将实际问题转化为数学问题并正确地解出这个数学问题.时安排 1时教学过程导入新 (直接引入)本节我们将对全的知识、方法进行系统的归纳总结;系统掌握解三角形的方法与技巧.由此展开新的探究.推进新 新知探究提出问题1本我们学习了哪些知识内容?请画出本的知识结构图ɦ
4、80;2解斜三角形要用到正弦定理、余弦定理,那么正弦定理、余弦定理都有哪些应用?3在解三角形时应用两个定理要注意些什么问题?若求一个三角形的角时,既可以用正弦定理,也可以用余弦定理,怎样选择较好?4本中解三角形的知识主要应用于怎样的一些问题?总结从初中到高中测量河流宽度和物体高度的方法活动:教师引导学生画出本知识框图,教师打出演示:从图中我们很清晰地看出本我们学习了正弦定理、余弦定理以及应用这两个定理解三角形,由于本
5、内容实践性很强,之后又重点研究了两个定理在测量距离、高度、角度等问题中的一些应用.教师与学生一起回忆正弦定理、余弦定理的内容及应用如下:正弦定理、余弦定理:asinA=bsinB=sin,a2=b2+2-2bsA,b2=2+a2-2asB,2=a2+b2-2abs正弦定理、余弦定理的应用:利用正弦定理,可以解决以下两类有关三角形的问题.①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).利用余弦定理,可以解决以下两类有关三角形的问题.①已知三边,求三个角;②已知两边和
6、它们的夹角,求第三边和其他两个角.在求解一个三角形时,既可以用正弦定理,也可以用余弦定理,要尽量选择运算量较小,不产生讨论的方法求解.若求边,尽量用正弦定理;若求角,尽量用余弦定理.除了正弦定理、余弦定理外,我们还学习了三角形面积公式S=12bsinA=12asinB=12absin,利用它我们可以解决已知两边及其夹角求三角形的面积.教师利用多媒体投影演示如下:解斜三角形时可用的定理和公式适用类型备注余弦定理a2=b2+2-2bsAb2=a2+2-2asB2=b2+a2-2bas(1)已知三边(2)已知两边及其夹角类型(1)(
7、2)有解时只有一解正弦定理asinA=bsinB=sin=2R(3)已知两角和一边(4)已知两边及其中一边的对角类型(3)在有解时只有一解,类型(4)可有两解、一解和无解三角形面积公式S=12bsinA =12asinB =12absin()已知两边及其夹角教师点拨学生,以上这些知识与初中的边角关系、勾股定理等内容构成三角形内容的有机整体.实际上,正弦定理只是初中“三角形中大角对大边,小角对小边”的边角关系的量化.余弦定理是初中“已知两边及其夹角,则这两个三角形全等”的量化,又是勾股定理的推广.本的应用举例也是在初中学习的一些
8、简单测量的基础上,应用了正弦定理、余弦定理解关于斜三角形的问题.在应用两个定理等知识解决一些与测量和几何计算有关的问题时,需注意以下几点:①在利用正弦定理求角时,由于正弦函数在(0,π)内不严格单调,所以角的个数可能不唯一,这时应注意借助已知条加以检验,务必做到不漏解,不多解
此文档下载收益归作者所有