勾股定理单元整体教学设计教案.doc

勾股定理单元整体教学设计教案.doc

ID:55306834

大小:85.38 KB

页数:5页

时间:2020-05-09

勾股定理单元整体教学设计教案.doc_第1页
勾股定理单元整体教学设计教案.doc_第2页
勾股定理单元整体教学设计教案.doc_第3页
勾股定理单元整体教学设计教案.doc_第4页
勾股定理单元整体教学设计教案.doc_第5页
资源描述:

《勾股定理单元整体教学设计教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、勾股定理单元整体教学设计题目勾股定理总课时8学校方山初级中学执教者刘伟平年级八年级学科数学设计来源集体备课教学时间2017年3月13日—3月24日教材分析勾股定理是教科书八年级下册第十八章的内容。勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。学情分析针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引

2、导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。教学目标(一)知识与技能1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。2、会运用勾股定理的逆定理判定直角三角形。3、通过具体的例子,了解定理的含义;了解逆命题、逆定理概念;知道原命题成立其逆命题不一定成立。(二)过程与方法1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般

3、的逻辑推理过程。(三)情感态度与价值观1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。重点勾股定理、逆定理及运用难点勾股定理及逆定理的探索过程课前准备1、多媒体课件2、网络资源课题:17.2.1勾股定理的逆定理(第5课时)课型新授课备课时间2017-3-18使用教师姓名使用时间主备刘伟平审核教师参与教师姓名刘伟平孙小娟教学目标:1.掌握直角三角形的判别条件;2.熟记一些勾股数;3.掌握勾股

4、定理的逆定理的探究方法.重点:探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点:勾股定理的逆定理的证明.教学流程二次备课(一)导入新课复习:(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?(二)讲授新课一、合作探究(10分钟)【探究一】:把一根长绳打上等

5、距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个最大的角便是什么角:.理由是:.【探究二】:用尺规画△ABC,使其三边长分别为2.5cm,6cm,6.5cm.观察你画出的三角形是直角三角形吗?换成三边长分别为4cm,7.5cm,8.5cm,再试一试.由此你能猜想到什么呢?【结论】如果一个三角形的三条边长a、b、c满足,那么这个三角形是直角三角形。我们把这个定理叫做勾股定理的逆定理【探究三】命题1两条直线平行,内错角相等此命题的题设是:,结论是:。命题2内错角相等,两条直线平行此

6、命题的题设是:,结论是:。【结论】命题1和命题2的题设和结论相反,把这样的两个命题叫做,把其中一个叫做原命题,另一个叫做它的。请你再举出两个对类似的命题:____________.【探究四】原命题是真命题,它的逆命题一定是真命题吗?请举例说明.5、判断由a、b、c组成的三角形是否是直角三角形:(1)a=15,b=8,c=17(2)a=13,b=14,c=15(3)a=,b=4,c=5(4)a=,b=1,c=(5)a=0.5,b=1.2,c=1.3(6)a=,b=,c=6、我们把像3、4、5这样,能够成为直角三角形三条

7、边长的三个正整数,称为勾股数。常见勾股数还有:;;等二、合作、交流:1.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么,这个三角形是直角三角形.证明:2、例题如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.(三)重难点精讲【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;分析:(1)每个命题都有逆命题,说逆

8、命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.(四)归纳小结:引导学生总结本课知识点(五)随堂小测:1、各组数中,以为边的三角形不是直角三角形的是()A、B、C、D、2、三角形的三边满足,则此三角形是()。A、锐角三角形B、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。