富源县第一中学解析几何复习总结.doc

富源县第一中学解析几何复习总结.doc

ID:55266380

大小:5.06 MB

页数:64页

时间:2020-05-08

富源县第一中学解析几何复习总结.doc_第1页
富源县第一中学解析几何复习总结.doc_第2页
富源县第一中学解析几何复习总结.doc_第3页
富源县第一中学解析几何复习总结.doc_第4页
富源县第一中学解析几何复习总结.doc_第5页
资源描述:

《富源县第一中学解析几何复习总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、富源县第一中学解析几何复习一考试要求:1.直线和圆的方程考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线

2、的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程.2.圆锥曲线方程考试内容:椭圆及其标准方程.椭圆的简单几何性质.了解椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的

3、定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.2010年高考数学考试大纲修订说明中文科的直线和圆的方程部分,将原考试要求中的“(6)掌握圆的标准方程和一般方程,理解圆的参数方程”改为“(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程”。文科的圆锥曲线方程部分,将原考试要求中的“(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质.理解椭圆的参数方程”改为“(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质.了解椭圆的参数方程”。高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解答题),共计2

4、7分左右,考查的知识点约为20个左右。其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。二、重点难点热点直线与圆(共3课时)问题1:求直线方程.常用待定系数法,即根据已知条件,首先确定采用直线方程的形式,然后确定其中相关的待定常数,如斜率、截距等.例1.已知直线l经过点P(2,1),且直线l':x-2y+4=0的

5、夹角为,求直线l的方程.思路分析:在l的斜率存在的前提下,可采用点斜式方程,若l的斜率不存在,则可直接写出方程.解:若直线l的斜率存在,设其为k,则∴这时直线l的方程为3x+4y-11=0.若直线l的斜率不存在,其方程为x=1,经过验证,这时它与l'的夹角为.因此,直线l的方程为3x+4y-11=0或x=1.点评:涉及用点斜式求直线方程的问题,一定要注意其斜是否存在;用截距式求方程时要讨论直线是否过原点.演变1:已知等腰直角三角形ABC中,C=90°,直角边BC在直线2+3y-6=0上,顶点A的坐标是(5,4),求边AB和AC所在的直线方程点

6、拨与提示:利用等腰直角三角形的性质,得出∠ABC=45°,再利用夹角公式,求得直线AB的斜率,进而求得了直线AB的方程问题2:两直线的位置关系利用两条直线平行或垂直的条件判定它们平行或垂直,由直线到直线的角和夹角公式求直线到直线的角和夹角.例2抛物线有光学性质由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0)一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l2x-4y-17=0上的

7、点N,再折射后又射回点M(如下图所示)(1)设P、Q两点坐标分别为(x1,y1)、(x2,y2),证明y1·y2=-p2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由分析:对称问题是直线方程的又一个重要应用本题是一道与物理中的光学知识相结合的综合性题目,考查了韦达定理,点关于直线对称,直线关于直线对称,直线的点斜式方程,两点式方程等知识点及理解问题、分析问题、解决问题的能力解:(1)证明:由抛物线的光学性质及题意知光线PQ必过抛物线的焦点F(,0)

8、,设直线PQ的方程为y=k(x-)①由①式得x=y+,将其代入抛物线方程y2=2px中,整理,得y2-y-p2=0,由韦达定理,y1y2=-p2当直线PQ的斜率角为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。