欢迎来到天天文库
浏览记录
ID:20802200
大小:371.63 KB
页数:8页
时间:2018-10-16
《解析几何复习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、解析几何复习一例1:给定三点A(1,0)、B(-1,0)、C(1,2),则过A点且与直线BC垂直的直线经过点()A、(0,1)B、(0,0)C、(-1,0)D、(0,-1)例2.原点到直线的距离为()A.1B.C.2D.例3.已知过点和的直线与直线平行,则的值为()ABCD例4.经过点作圆的切线,则切线的方程为()A.B.C.D.作业知识点:关于直线的斜率K的综合知识XYO1.已知三点A(2,-2)、B(3,m)、C(m,0)共线,则m=。2.如图,直线、、的斜率分别是、、,则()A、<<B、<<C、<<D、<<3.直线经过原点与点,直线的倾斜为.()4.若过点A(3,0
2、)的直线l与曲线有公共点,则直线l斜率的取值范围为()A.(,)B.[,]C.(,)D.[,]5.已知直线平行,则K得值是()(A)1或3(B)1或5(C)3或5(D)1或26.(2009全国Ⅰ文)若直线被两平行线所截得的线段的长为,则的倾斜角可以是①②③④⑤w.w.w.k.s.5.u.c.o.m其中正确答案的序号是.(写出所有正确答案的序号)知识点:求直线方程1.直线过点(-1,2)且与直线垂直,则的方程是()A.B.C.D.2.若PQ是圆的弦,PQ的中点是(1,2)则直线PQ的方程是()(A)(B)(C)(D)3.过点P(2,3)向圆上作两条切线PA、PB,则弦AB所
3、在直线方程为()A.B.C.D.4.光线由点P(2,3)射到直线上,反射后过点Q(1,1),则反射光线方程为_______________5.直线3x+4y-12=0和6x+8y+6=0间的距离是6.与直线平行,并且距离等于的直线方程是____________.7.已知直线经过直线和的交点,并且与直线垂直,求直线的方程.解析几何部分知识点:关于直线的斜率K的综合知识1.2.C3.B4.D5.【解析】当k=3时,两直线平行,当k≠3时,由两直线平行,斜率相等,得:=k-3,解得:k=5,故选C。6.【解析】本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合
4、的思想。解:两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。故填写①或⑤知识点:求直线方程1.【解析】可得斜率为即,选A。2.B3.B4.5.36.或7.解:由即两直线的交点坐标是(-2,1)……………(4分)直线的斜率为1,由已知所求直线的斜率为-1……………(6分)则所求直线的方程为:即……………(10分)知识点:求圆的方程1.【答案】A解法1(直接法):设圆心坐标为,则由题意知,解得,故圆的方程为。解法2(数形结合法):由作图根据点到圆心的距离为1易知圆心为(0,2),故圆的方程为解法3(验证法):将点(1,2)代入四个选择支,排除B,
5、D,又由于圆心在轴上,排除C。2.解:由题意得,所求圆的半径为,所以所求圆的方程为.3..B4.知识点:直线与圆的关系(相切,相离)1.【解析】圆心为到直线,即的距离,而,选B。2.【解析】圆心在x+y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径即可.【答案】B3.解析:,圆心到直线的距离,由垂径定理知所求弦长为故选D.4.(C)5.6.B知识点:圆与圆的关系1、C2、B3.4.解析:由题知,且,又,所以有,∴。5.(-2,-1).知识点:求轨迹1.【答案】A【解析】设圆上任一点为Q(s,t),PQ的中点为A(x,y),则,解得:,代入圆方程
6、,得(2x-4)2+(2y+2)2=4,整理,得:知识点:对称1.A2.A3。【解析】设圆的圆心为(a,b),则依题意,有,解得:,对称圆的半径不变,为1,故选B。.知识点:数型结合1.,2.C3.正负根号34.C5.36.C7.8D知识点:空间坐标系1.A2.3.【解析】设由可得故【答案】(0,-1,0)w.w.w.k.s.5.u.c.o.m解析几何综合题1.(2008水平测试)已知圆经过、两点,且圆心在直线上.(1)求圆的方程;(2)若直线经过点且与圆相切,求直线的方程.1解(1)因为、,所以线段中点的坐标为,直线的斜率,因此直线的垂直平分线的方程是,即.圆心的坐标是
7、方程组的解.解此方程组,得即圆心的坐标为.圆心为的圆的半径长.所以圆的方程为.(2)由于直线经过点,当直线的斜率不存在时,与圆相离.当直线的斜率存在时,可设直线的方程为,即:.因为直线与圆相切,且圆的圆心为,半径为,所以有.解得或.所以直线的方程为或,即:或.2.(2007水平测试)已知圆经过坐标原点,且与直线相切,切点为.(1)求圆的方程;(2)若斜率为的直线与圆相交于不同的两点,求的取值范围.2.解(1)设圆心的坐标为.依题意得解得圆心的坐标为.圆的半径为.圆的方程为.(2)解:设直线的方程为.由消去得...直线与圆相交于
此文档下载收益归作者所有