欢迎来到天天文库
浏览记录
ID:5525996
大小:32.50 KB
页数:12页
时间:2017-12-17
《不等式的性质教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、不等式的性质教案教学设计3.12 不等式的性质整体设计教学分析 本节将在初中学习的不等式的三条基本性质的基础上,系统归纳整理不等式的其他性质,这是进一步学习不等式的基础.要求学生掌握不等式的基本性质与推论,并能用这些基本性质证明简单不等式,进而更深层地从理不等式的性质教案教学设计3.12 不等式的性质整体设计教学分析 本节将在初中学习的不等式的三条基本性质的基础上,系统归纳整理不等式的其他性质,这是进一步学习不等式的基础.要求学生掌握不等式的基本性质与推论,并能用这些基本性质证明简单不等式,进
2、而更深层地从理性角度建立不等观念.对不等式的基本性质,教师应指导学生用数学的观点与等式的基本性质作类比、归纳逻辑分析,并鼓励学生从理性角度去分析量与量之间的比较过程.基本性质2、3、4在初中是由实例验证,在高中里要进行逻辑证明.教学中教师一定要认识到对学生进行逻辑训练的必要性,注意启发学生要求证明的欲望.在中学数学中,不等式的地位不仅特殊,而且重要,它与中学数学几乎所有节都有联系,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点.为此,在进行本节教学时,教材中基本性质的推论可由学生自己证明
3、,后的练习A、B要求学生全做.三维目标 1.通过对初中三条基本性质的回忆,以及上节学习的知识,证明不等式的基本性质和推论.2.在了解不等式的基本性质的基础上,利用它们证明一些简单的不等式.3.通过本节的学习,激发学生顽强的探究精神和严肃认真的科学态度.体会数学的结构美和系统美,激发学生学习数学更大的热情.重点难点 教学重点:理解并证明不等式的基本性质与推论,并能用基本性质证明一些简单的不等式.教学难点:不等式基本性质的灵活应用.时安排 1时教学过程导入新 思路1(复习导入)让学
4、生回忆并叙述初中所学的不等式的三条基本性质,即不等式的两边都加上(或减去)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.让学生根据上一节的学习将上面的字语言用不等式表示出,并进一步探究,由此而展开新.思路2(类比导入)等式具有许多性质,其中有:在等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得的仍是等式.我们自然会联想到,不等式是否也会有此同样的性质呢?学生会进一步探究验证这个联想,由此
5、而展开新.推进新 新知探究提出问题 1怎样比较两个实数或代数式的大小?2初中都学过不等式的哪些基本性质?你能给出证明吗?3不等式有哪些基本性质和推论?这些性质有哪些作用?活动:教师引导学生一起回忆等式的性质:等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式.利用这些性质,我们可以对等式进行化简、变形或证明.那么不等式会不会也有类似的性质呢?也就是说,如果在不等式的两边
6、都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果会不会不变呢?为此教师引导学生回忆上节学过的实数的基本性质(或用多媒体展示),即a-b>0a>b;a-b<0a<b;a-b=0a=b根据实数的基本性质,要比较两个实数的大小,可以考察这两个实数的差.这是我们研究不等关系的一个出发点.从实数的基本性质,我们可以证明下列常用的不等式性质:性质1,如果a>b,那么b<a;如果b<a,那么a>b,即a>bb<a这种性质称为不等式的对称性.性质2,如果a>b,b>,那么a>,即a>b,b>a>这种
7、性质称为不等式的传递性.性质3,如果a>b,那么a+>b+,即不等式的两边都加上同一个实数,所得不等式与原不等式同向.由此得到推论1,不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边.这个推论称为不等式的移项法则.推论2,如果a>b,>d,则a+>b+d这类不等号方向相同的不等式,叫做同向不等式,同向不等式可以相加,这个推论可以推广为更一般的结论.性质4,如果a>b,>0,则a>b;如果a>b,<0,则a<b推论1,如果a>b>0,>d>0,那么a>bd推论2,如果a>b>0,那么
8、an>bn(n∈N+,n>1).推论3,如果a>b>0,那么na>nb(n∈N+,n>1).以上这些不等式的性质是解决不等式问题的基本依据.其中性质1是不等式的对称性;性质2是不等式的传递性;性质3表明不等式的两边都加上同一个实数,所得不等式与原不等式同向,由此可得不等式中任何一项可以改变符号后移到不等号的另一边;性质4表明,不等式两边允许用非零数(或式)去乘,相乘后的不等式的方向取决于乘式的符号,
此文档下载收益归作者所有