不等式的性质教案

不等式的性质教案

ID:10114657

大小:60.00 KB

页数:4页

时间:2018-06-10

不等式的性质教案_第1页
不等式的性质教案_第2页
不等式的性质教案_第3页
不等式的性质教案_第4页
资源描述:

《不等式的性质教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《不等式的性质》教案江都市丁沟中学谈家国教学目标1.理解同向不等式,异向不等式概念;  2.掌握并会证明定理1,2,3;  3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据;  4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的逻辑推理方法教学方法:引导式教学过程一、复习回顾  上一节课,我们一起学习了比较两实数大小的方法,主要根据的是实数运算的符号法则,而这也是推证不等式性质的主要依据,因此,我们来作一下回顾:  这一节课,我们将利用

2、比较实数的方法,来推证不等式的性质.二、讲授新课  在证明不等式的性质之前,我们先明确一下同向不等式与异向不等式的概念.  1.同向不等式:两个不等号方向相同的不等式,例如:是同向不等式.   异向不等式:两个不等号方向相反的不等式.例如:是异向不等式.  2.不等式的性质:定理1:若,则定理1说明,把不等式的左边和右边交换,所得不等式与原不等式异向.在证明时,既要证明充分性,也要证明必要性.证明:∵,∴由正数的相反数是负数,得说明:定理1的后半部分可引导学生仿照前半部分推证,注意向学生强调实数运算的符号法则的应用.定理

3、2:若,且,则.证明:∵∴根据两个正数的和仍是正数,得∴说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数.定理3:若,则定理3说明,不等式的两边都加上同一个实数,所得不等式与原不等式同向.证明:∵             ∴说明:(1)定理3的证明相当于比较与的大小,采用的是求差比较法;(2)不等式中任何一项改变符号后,可以把它从一边移到另一边,理由是:根据定理3可得出:若,则即.   定理3推论:若.证明:∵,∴    ①∵∴     ②由①、②得说明:(1)推论的证明连续两次运用定理3然后由定理2证

4、出;  (2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;  (3)两个同向不等式的两边分别相减时,就不能作出一般的结论;  (4)定理3的逆命题也成立.(可让学生自证)三、课堂练习  1.证明定理1后半部分;  2.证明定理3的逆定理.说明:本节主要目的是掌握定理1,2,3的证明思路与推证过程,练习穿插在定理的证明过程中进行.课堂小结  通过本节学习,要求大家熟悉定理1,2,3的证明思路,并掌握其推导过程,初步理解证明不等式的逻辑推理方法.课后

5、作业  1.求证:若  2.证明:若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。