欢迎来到天天文库
浏览记录
ID:55253468
大小:800.00 KB
页数:7页
时间:2020-05-07
《新课标高二数学选修2-2导数单元测试题有答案(十五).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课标选修2-2高二数学理导数测试题一.选择题(1)函数是减函数的区间为(D)A.B.C.D.(0,2)(2)曲线在点(1,-1)处的切线方程为()A.B。C。D。a(3)函数y=x2+1的图象与直线y=x相切,则=()A.B.C.D.1(4)函数已知时取得极值,则=()A.2B.3C.4D.5(5)在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是()A.3B.2C.1D.0(6)函数有极值的充要条件是()A.B.C.D.(7)函数(的最大值是()A.B.-1C.0D.1(8)函数=(-1)
2、(-2)…(-100)在=0处的导数值为( )A、0 B、1002 C、200 D、100!(9)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.二.填空题(1).垂直于直线2x+6y+1=0且与曲线y=x3+3x-5相切的直线方程是。(2).设f(x)=x3-x2-2x+5,当时,f(x)3、数的取值范围是(6).已知函数既有极大值又有极小值,则实数的取值范围是(7).若函数是R是的单调函数,则实数的取值范围是(8).设点是曲线上的任意一点,点处切线倾斜角为,则角的取值范围是。三.解答题1.已知函数的图象过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.2.已知函数在处取得极值.(Ⅰ)讨论和是函数的极大值还是极小值;(Ⅱ)过点作曲线的切线,求此切线方程.3.已知函数(1)当时,求函数极小值;(2)试讨论曲线与轴公共点的个数。4.已知是函数的一个极值点,其中,4、(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.5.设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.6.已知在区间[0,1]上是增函数,在区间上是减函数,又(Ⅰ)求的解析式;(Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.7.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.参考解答一.BBDDDCDDA二.5、1、y=3x-52、m>73、4-114、5、6、7、8、三.1.解:(Ⅰ)由的图象经过P(0,2),知d=2,所以由在处的切线方程是知故所求的解析式是(2)解得当当故内是增函数,在内是减函数,在内是增函数.2.(Ⅰ)解:,依题意,,即解得.∴.令,得.若,则,故在上是增函数,在上是增函数.若,则,故在上是减函数.所以,是极大值;是极小值.(Ⅱ)解:曲线方程为,点不在曲线上.设切点为,则点M的坐标满足.因,故切线的方程为注意到点A(0,16)在切线上,有化简得,解得.所以,切点为,切线方程为.3.解:(1)6、极小值为(2)①若,则,的图像与轴只有一个交点;②若,极大值为,的极小值为,的图像与轴有三个交点;③若,的图像与轴只有一个交点;④若,则,的图像与轴只有一个交点;⑤若,由(1)知的极大值为,的图像与轴只有一个交点;综上知,若的图像与轴只有一个交点;若,的图像与轴有三个交点。4.解(I)因为是函数的一个极值点,所以,即,所以(II)由(I)知,=当时,有,当变化时,与的变化如下表:100调调递减极小值单调递增极大值单调递减故有上表知,当时,在单调递减,在单调递增,在上单调递减.(III)由已知得,即又所以即①7、设,其函数开口向上,由题意知①式恒成立,所以解之得又所以即的取值范围为5.解:(Ⅰ),因为函数在及取得极值,则有,.即解得,.(Ⅱ)由(Ⅰ)可知,,.当时,;当时,;当时,.所以,当时,取得极大值,又,.则当时,的最大值为.因为对于任意的,有恒成立,所以 ,解得 或,因此的取值范围为.6.解:(Ⅰ),由已知,即解得,,,.(Ⅱ)令,即,,或.又在区间上恒成立,7.(Ⅰ)∵为奇函数,∴即∴∵的最小值为∴又直线的斜率为因此,∴,,.(Ⅱ). ,列表如下:极大极小 所以函数的单调增区间是和∵,,∴在上的最8、大值是,最小值是袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄
3、数的取值范围是(6).已知函数既有极大值又有极小值,则实数的取值范围是(7).若函数是R是的单调函数,则实数的取值范围是(8).设点是曲线上的任意一点,点处切线倾斜角为,则角的取值范围是。三.解答题1.已知函数的图象过点P(0,2),且在点M处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.2.已知函数在处取得极值.(Ⅰ)讨论和是函数的极大值还是极小值;(Ⅱ)过点作曲线的切线,求此切线方程.3.已知函数(1)当时,求函数极小值;(2)试讨论曲线与轴公共点的个数。4.已知是函数的一个极值点,其中,
4、(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.5.设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.6.已知在区间[0,1]上是增函数,在区间上是减函数,又(Ⅰ)求的解析式;(Ⅱ)若在区间(m>0)上恒有≤x成立,求m的取值范围.7.设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.(Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.参考解答一.BBDDDCDDA二.
5、1、y=3x-52、m>73、4-114、5、6、7、8、三.1.解:(Ⅰ)由的图象经过P(0,2),知d=2,所以由在处的切线方程是知故所求的解析式是(2)解得当当故内是增函数,在内是减函数,在内是增函数.2.(Ⅰ)解:,依题意,,即解得.∴.令,得.若,则,故在上是增函数,在上是增函数.若,则,故在上是减函数.所以,是极大值;是极小值.(Ⅱ)解:曲线方程为,点不在曲线上.设切点为,则点M的坐标满足.因,故切线的方程为注意到点A(0,16)在切线上,有化简得,解得.所以,切点为,切线方程为.3.解:(1)
6、极小值为(2)①若,则,的图像与轴只有一个交点;②若,极大值为,的极小值为,的图像与轴有三个交点;③若,的图像与轴只有一个交点;④若,则,的图像与轴只有一个交点;⑤若,由(1)知的极大值为,的图像与轴只有一个交点;综上知,若的图像与轴只有一个交点;若,的图像与轴有三个交点。4.解(I)因为是函数的一个极值点,所以,即,所以(II)由(I)知,=当时,有,当变化时,与的变化如下表:100调调递减极小值单调递增极大值单调递减故有上表知,当时,在单调递减,在单调递增,在上单调递减.(III)由已知得,即又所以即①
7、设,其函数开口向上,由题意知①式恒成立,所以解之得又所以即的取值范围为5.解:(Ⅰ),因为函数在及取得极值,则有,.即解得,.(Ⅱ)由(Ⅰ)可知,,.当时,;当时,;当时,.所以,当时,取得极大值,又,.则当时,的最大值为.因为对于任意的,有恒成立,所以 ,解得 或,因此的取值范围为.6.解:(Ⅰ),由已知,即解得,,,.(Ⅱ)令,即,,或.又在区间上恒成立,7.(Ⅰ)∵为奇函数,∴即∴∵的最小值为∴又直线的斜率为因此,∴,,.(Ⅱ). ,列表如下:极大极小 所以函数的单调增区间是和∵,,∴在上的最
8、大值是,最小值是袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄
此文档下载收益归作者所有