欢迎来到天天文库
浏览记录
ID:55223977
大小:1005.00 KB
页数:16页
时间:2020-05-06
《指数函数复习教(学)案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、指数函数一、考纲点击1.了解指数函数模型的实际背景;2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点;4.知道指数函数是一类重要的函数模型。二、热点、难点提示1.指数幂的运算、指数函数的图象、单调性是高考考查的热点.2.常与函数的其他性质、方程、不等式等交汇命题,考查分类讨论思想和数形结合思想.3.多以选择、填空题形式出现,但若以e为底的指数函数与导数交汇命题则以解答题形式出现.1.根式(1)根式的概念根式的概念符号表示备注如果,那么叫做的次方根当为奇数时,正数的次方根是一个正数,负数的
2、次方根是一个负数零的次方根是零当为偶数时,正数的次方根有两个,它们互为相反数负数没有偶次方根(2).两个重要公式①;②。2.有理数指数幂(1)幂的有关概念①正整数指数幂:;②零指数幂:;③负整数指数幂:④正分数指数幂:;⑤负分数指数幂:⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。(2)有理数指数幂的性质①aras=ar+s(a>0,r、s∈Q);②(ar)s=ars(a>0,r、s∈Q);③(ab)r=arbs(a>0,b>0,r∈Q);.3.指数函数的图象与性质y=axa>103、0,+)性质(1)过定点(0,1)(2)当x>0时,y>1;x<0时,00时,01(3)在(-,+)上是增函数(3)在(-,+)上是减函数思考:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx(4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。【热点难点全析】一、幂的运算的一般规律及要求1.相关链接(1)分数指数幂与根式根据可以4、相互转化.(2)分数指数幂中的指数不能随便约分,例如要将 写成等必须认真考查a的取值才能决定,如而无意义.(3)在进行幂的运算时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行运算.(4)指数幂的一般运算步骤:有括号先算括号里的,无括号先做指数运算,先乘除后加减,负指数幂化成正指数幂的倒数,底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数的,先化成假分数,若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数运算性质.指数幂的化简与求值的原则及结果要求(1)化简原则①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;5、④注意运算的先后顺序.注:有理数指数幂的运算性质中,其底数都大于0,否则不能用性质运算。(2)结果要求①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂表示;③结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂。2.例题解析〖例1〗(1)化简:;(2)计算:分析:(1)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算。(2)题目中给出的是分数指数幂,先看其是否符合运算法则的条件,如符合用法则进行下去,如不符合应再创设条件去求。解:(1)原式=;(2)原式=〖例2〗已知,求的值解:∵,∴,∴,∴,∴,∴,6、又∵,∴二、指数函数的图象及应用1.相关链接(1)图象的变换(2)从图象看性质函数的图象直观地反映了函数的基本性质①图象在x轴上的投影可得出函数的定义域;②图象在y轴上的投影可得出函数的值域;③从左向右看,由图象的变化得出增减区间,进而得出最值;④由图象是否关于原点(或y轴)对称得出函数是否为奇(偶)函数;⑤由两个图象交战的横坐标可得方程的解。(3)应用指数函数图象研究指数型函数的性质:对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(4)利用图象解指数型方程、不等式:一些指数方7、程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.2.例题解析〖例1〗已知f(x)=8、2x-19、(1)求f(x)的单调区间.(2)比较f(x+1)与f(x)的大小.(3)试确定函数g(x)=f(x)-x2零点的个数.【方法诠释】(1)作出f(x)的图象,数形结合求解.(2)在同一坐标系中分别作出f(x)、f(x+1)图象,数形结合求解.(3)在同一坐标系中分别作出函数f(x)与y=x2的图象,数形结合求解.解析:(1)由f(x)=10、2x-111、=可作出函数的图象如图.因此函数f(x)在(-∞,
3、0,+)性质(1)过定点(0,1)(2)当x>0时,y>1;x<0时,00时,01(3)在(-,+)上是增函数(3)在(-,+)上是减函数思考:如图所示,是指数函数(1)y=ax,(2)y=bx,(3),y=cx(4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。即无论在轴的左侧还是右侧,底数按逆时针方向变大。【热点难点全析】一、幂的运算的一般规律及要求1.相关链接(1)分数指数幂与根式根据可以
4、相互转化.(2)分数指数幂中的指数不能随便约分,例如要将 写成等必须认真考查a的取值才能决定,如而无意义.(3)在进行幂的运算时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行运算.(4)指数幂的一般运算步骤:有括号先算括号里的,无括号先做指数运算,先乘除后加减,负指数幂化成正指数幂的倒数,底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数的,先化成假分数,若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数运算性质.指数幂的化简与求值的原则及结果要求(1)化简原则①化根式为分数指数幂;②化负指数幂为正指数幂;③化小数为分数;
5、④注意运算的先后顺序.注:有理数指数幂的运算性质中,其底数都大于0,否则不能用性质运算。(2)结果要求①若题目以根式形式给出,则结果用根式表示;②若题目以分数指数幂的形式给出,则结果用分数指数幂表示;③结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂。2.例题解析〖例1〗(1)化简:;(2)计算:分析:(1)因为题目中的式子既有根式又有分数指数幂,先化为分数指数幂以便用法则运算。(2)题目中给出的是分数指数幂,先看其是否符合运算法则的条件,如符合用法则进行下去,如不符合应再创设条件去求。解:(1)原式=;(2)原式=〖例2〗已知,求的值解:∵,∴,∴,∴,∴,∴,
6、又∵,∴二、指数函数的图象及应用1.相关链接(1)图象的变换(2)从图象看性质函数的图象直观地反映了函数的基本性质①图象在x轴上的投影可得出函数的定义域;②图象在y轴上的投影可得出函数的值域;③从左向右看,由图象的变化得出增减区间,进而得出最值;④由图象是否关于原点(或y轴)对称得出函数是否为奇(偶)函数;⑤由两个图象交战的横坐标可得方程的解。(3)应用指数函数图象研究指数型函数的性质:对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(4)利用图象解指数型方程、不等式:一些指数方
7、程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.2.例题解析〖例1〗已知f(x)=
8、2x-1
9、(1)求f(x)的单调区间.(2)比较f(x+1)与f(x)的大小.(3)试确定函数g(x)=f(x)-x2零点的个数.【方法诠释】(1)作出f(x)的图象,数形结合求解.(2)在同一坐标系中分别作出f(x)、f(x+1)图象,数形结合求解.(3)在同一坐标系中分别作出函数f(x)与y=x2的图象,数形结合求解.解析:(1)由f(x)=
10、2x-1
11、=可作出函数的图象如图.因此函数f(x)在(-∞,
此文档下载收益归作者所有