欢迎来到天天文库
浏览记录
ID:55197109
大小:484.50 KB
页数:6页
时间:2020-05-02
《三角函数大题训练教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三角函数常见习题类型解法类题:1.已知tanx=2,求sinx,cosx的值.解:因为,又sin2x+cos2x=1,联立得解这个方程组得2.求的值.解:原式3.若,求sinxcosx的值.解:法一:因为所以sinx-cosx=2(sinx+cosx),得到sinx=-3cosx,又sin2x+cos2x=1,联立方程组,解得所以法二:因为所以sinx-cosx=2(sinx+cosx),所以(sinx-cosx)2=4(sinx+cosx)2,所以1-2sinxcosx=4+8sinxcosx,所以有5.求函数在区间[0,2p]上的值域.解:因为0≤x≤2π,所以由正弦函数的图象,得到所
2、以y∈[-1,2].6.求下列函数的值域.(1)y=sin2x-cosx+2;(2)y=2sinxcosx-(sinx+cosx).解:(1)y=sin2x-cosx+2=1-cos2x-cosx+2=-(cos2x+cosx)+3,令t=cosx,则利用二次函数的图象得到(2)y=2sinxcosx-(sinx+cosx)=(sinx+cosx)2-1-(sinx+cosx),令t=sinx+cosx,,则则,利用二次函数的图象得到7.若函数y=Asin(ωx+φ)(ω>0,φ>0)的图象的一个最高点为,它到其相邻的最低点之间的图象与x轴交于(6,0),求这个函数的一个解析式.解:由最高
3、点为,得到,最高点和最低点间隔是半个周期,从而与x轴交点的间隔是个周期,这样求得,T=16,所以又由,得到可以取8.已知函数f(x)=cos4x-2sinxcosx-sin4x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若求f(x)的最大值、最小值.数的值域.解:(Ⅰ)因为f(x)=cos4x-2sinxcosx-sin4x=(cos2x-sin2x)(cos2x+sin2x)-sin2x所以最小正周期为π.(Ⅱ)若,则,所以当x=0时,f(x)取最大值为当时,f(x)取最小值为1.已知,求(1);(2)的值.解:(1);(2).说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行
4、弦、切互化,就会使解题过程简化。1.求函数的值域。解:设,则原函数可化为,因为,所以当时,,当时,,所以,函数的值域为。3.已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解:(1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,,所以成立,从而函数的图像关于直线对称。4.已知函数y=cos2x+sinx·cosx+1(x∈R),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(x∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos
5、2x+sinx·cosx+1=(2cos2x-1)++(2sinx·cosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+所以y取最大值时,只需2x+=+2kπ,(k∈Z),即x=+kπ,(k∈Z)。所以当函数y取最大值时,自变量x的集合为{x
6、x=+kπ,k∈Z}(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),
7、得到函数y=sin(2x+)的图像;(iv)把得到的图像向上平移个单位长度,得到函数y=sin(2x+)+的图像。综上得到y=cos2x+sinxcosx+1的图像。25.(08北京卷15)已知函数()的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.26.(08天津卷17)已知函数()的最小值正周期是.(Ⅰ)求的值;(Ⅱ)求函数的最大值,并且求使取得最大值的的集合.27.(08安徽卷17)已知函数(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域28.(08陕西卷17)已知函数.(Ⅰ)求函数的最小正周期及最值;(Ⅱ)令,判断函数的奇偶性,并说明理由.25.解
8、:(Ⅰ).因为函数的最小正周期为,且,所以,解得.(Ⅱ)由(Ⅰ)得.因为,所以,所以,因此,即的取值范围为.26.解:由题设,函数的最小正周期是,可得,所以.(Ⅱ)由(Ⅰ)知,.当,即时,取得最大值1,所以函数的最大值是,此时的集合为27.解:(1)(2)因为在区间上单调递增,在区间上单调递减,所以当时,取最大值1又,当时,取最小值所以函数在区间上的值域为28.解:(Ⅰ).的最小正周期.当时,取得最小值;当时,取得最大值
此文档下载收益归作者所有