2、2>=π-=.3.已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为( )A.2B.C.D.1【解析】选D.以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系(如图),则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,2),E(0,2,),易知AC1∥平面BDE.设n=(x,y,z)是平面BDE的法向量.则取y=1,则n=(-1,1,-)为平面BDE的一个法向量.又=(2,0,0),所以点A到平面BDE的距离是d===1.故直线AC1到平面BED的距离为1.4.如
3、图,点C在圆锥PO的底面圆O上,AB是直径,AB=8,∠BAC=30°,圆锥的母线与底面成的角为60°,则点A到平面PBC的距离为( )A.B.2C.D.【解析】选C.如图,过点O作AB的垂线Ox,以Ox,OB,OP分别为x,y,z轴建立空间直角坐标系,由题意可得A(0,-4,0),B(0,4,0),C(-2,2,0),P(0,0,4).设平面PBC的法向量为m=(x,y,z),则所以所以y=z=-x,所以取m=(-1,,1),因为=(0,4,4),所以d===,所以点A到平面PBC的距离为.5.(多选)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段
4、PB上,PD∥平面MAC,PA=PD=,AB=4,AC,BD交于点E,则( )A.M为PB的中点B.二面角B-PD-A的大小为C.若O为AD的中点,则OP⊥OED.直线MC与平面BDP所成的角为【解析】选ABC.如图①,连接ME,因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为四边形ABCD是正方形,所以E为BD的中点,所以M为PB的中点.如图②,取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为四边形ABCD是正方形,所以OE⊥AD.
5、如图②,建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的法向量为p=(0,1,0),所以cos==.由题意知二面角B-PD-A为锐角,所以它的大小为.由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则sinα=
6、cos
7、==,所以直线MC与平面BDP所成角不为.二、填空题(每小题5分,共15分)6.如图所示,P是二面角α-AB-β棱上一点,分别在α,β内引射线PM,PN,若∠B
8、PM=∠BPN=45°,∠MPN=60°,则二面角α-AB-β大小为________. 【解析】如图,过M在α内作MF⊥AB,过F在β内作FN⊥AB交PN于点N,连接MN.因为∠MPB=∠NPB=45°,所以△PMF≌△PNF.设PM=1,则MF=NF=,PM=PN=1,又因为∠MPN=60°,所以MN=PM=PN=1,所以MN2=MF2+NF2,所以∠MFN=90°.答案:90°7.在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为________. 【解析】根据题意,可建立如图所示的空间直角坐标系P-xyz,则P(0,0,0),A(a,0,0
9、),B(0,a,0),C(0,0,a).过点P作PH⊥平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.因为PA=PB=PC,所以H为△ABC的外心.又因为△ABC为正三角形,所以H为△ABC的重心,可得H点的坐标为,,.所以PH==a.所以点P到平面ABC的距离为a.答案:a8.如图,在空间直角坐标系中有棱长为a的正方体ABCD-A1B1C1D1,点M是线段DC1上的动点,则