欢迎来到天天文库
浏览记录
ID:55092
大小:155.13 KB
页数:21页
时间:2017-04-30
《《酶工程》 课后习题答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章酶工程基础1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学① 酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。② 比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。③ 酶活力:也称为酶活性,是指酶催化某一化学反应的能力。其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。④
2、酶活国际单位:1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。⑤ 酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。2.说说酶的研究简史酶的研究简史如下:(1)不清楚的应用:酿酒、造酱、制饴、治病等。(2)酶学的产生:1777年,意大利物理学家Spallanzani的山鹰实验;1822年,美国外科医生Beaumont研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃
3、蛋白酶。1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家Kűhne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。(3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化
4、学本质。3.说说酶工程的发展概况I.酶工程发展如下:①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949年,用微生物液体深层培养法进行a-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971年各国科学家开始使用“酶工程”
5、这一名词。II.在酶的应用过程中,人们注意到酶的一些不足之处,如:稳定性差,对强酸碱敏感,只能使用一次,分离纯化困难等,解决的方法之一是固定化。固定化技术的发展经历如下历程:①1916年,Nelson和Griffin发现蔗糖酶吸附到骨炭上仍具催化活性;②1969年,日本千佃一郎首次在工业规模上用固定化氨基酰化酶从DL-氨基酸生产L-氨基酸;③1971年,第一届国际酶工程会议在美国召开,会议的主题是固定化酶。4.酶的催化特点酶催化作用特性有:①极高的催化效率:在37℃或更低的温度下,酶的催化速度是没有催化剂的化学反应速率
6、的1012-1020倍;②高度的专一性:一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并生成一定的产物;③活性的不稳定性:酶的催化反应需要温和的条件,强酸、强碱、高温等条件都能使酶破坏而完全失去活性,所以酶作用一般都要求比较温和的条件,如常温、常压、接近中性的酸碱度等;④活性的可调节性:酶的催化活性是受调节和控制的酶促反应受多种因素的调控,以适应机体对不断变化的内外环境和生命活动的需要。其中包括三方面的调节,a.对酶生成与降解量的调节;b.酶催化效力的调节;c.通过改变底物浓度对酶进行调节等。5.简
7、要说说影响酶催化作用的因素影响酶催化作用的因素有内因和外因,内因有:酶浓度、底物浓度和产物浓度;外因有:温度、PH、激活剂和抑制剂。① 底物浓度:当底物浓度很低时,反应速度随底物浓度的增加而急剧加快,两者呈正比关系,表现为一级反应;随着底物浓度的升高,反应速度不再呈正比例加快,反应速度增加的幅度不断下降;如果继续加大底物浓度,反应速度不再增加,表现为零级反应,此时,无论底物浓度增加多大,反应速度也不再增加。② 产物浓度:生物代谢过程中产生的中间产物或终产物是酶的变构剂,使酶变构而影响酶的反应速度,即反馈调节作用。③ 酶
8、浓度:在底物浓度足够高的条件下,酶催化反应速度与酶浓度成正比。④ 温度:在一定温度范围内,反应速度随温度升高而加快,一般温度每升高10℃,反应速率大约增加一倍;超过一定范围,较高温度会引起酶三维结构变化,甚至变性,导致催化活性下降,反应速度反而随温度上升而减缓。⑤ PH:酶分子处于最适PH时,催化反应速度达最大值;当反应介质PH偏
此文档下载收益归作者所有