复数的教学设计.doc

复数的教学设计.doc

ID:54607789

大小:17.50 KB

页数:6页

时间:2020-04-19

复数的教学设计.doc_第1页
复数的教学设计.doc_第2页
复数的教学设计.doc_第3页
复数的教学设计.doc_第4页
复数的教学设计.doc_第5页
资源描述:

《复数的教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、★精品文档★复数的教学设计数系的扩充与复数的概念教学设计及反思引入:大家都知道,数,是数学中的基本概念,也是我们生活和科学技术时刻离不开的语言和工具前几天,老师遇到了这样一个与数有关的问题,大家看看该怎样解决呢?问题1:已知,求:;对于第二个问,学生可能出现下面几种方案得出结论,方案一:方案二:方案三:通过可是方案四:你是怎么处理的,结论是什么?第二个问为什么没解出来?为什么存在着使来,你是怎么想的呢?正如同学们所分析的,数的概念需要进一步发展,实数集需要扩充这就是本节课要研究的内容——2016全新精品资料-全新公文范文

2、-全程指导写作–独家原创6/6★精品文档★复数的教学设计数系的扩充与复数的概念教学设计及反思引入:大家都知道,数,是数学中的基本概念,也是我们生活和科学技术时刻离不开的语言和工具前几天,老师遇到了这样一个与数有关的问题,大家看看该怎样解决呢?问题1:已知,求:;对于第二个问,学生可能出现下面几种方案得出结论,方案一:方案二:方案三:通过可是方案四:你是怎么处理的,结论是什么?第二个问为什么没解出来?为什么存在着使来,你是怎么想的呢?正如同学们所分析的,数的概念需要进一步发展,实数集需要扩充这就是本节课要研究的内容——20

3、16全新精品资料-全新公文范文-全程指导写作–独家原创6/6★精品文档★数系的扩充与复数的概念应该如何进行数的扩充呢?到目前为止,大家已经知道,数系经历了三次扩充,就让我们通过回忆,从中寻找数系扩充的方法请大家以四人为一组合作探讨下面的问题问题2:数在不断的发展,到目前为止,经历了三次扩充,回顾数从自然数发展到实数的三次扩充历程说明数集N,Z,Q,R的关系分析每一次引入新数,扩大数系的原因同学们说的非常好,数的这种发展一方面是生产生活的需要,另一方面也是数学本身发展的需要数与数之间的联系正是通过一些运算建立起来的,如果没

4、有运算,数不过是一些孤立的符号,毫无意义,接下来让我们从运算的角度,进一步讨论数的扩充问题3:对于加、减、乘、除、乘方、开方这六种运算来说,在以下四个数集中,(1)任意两个数运算所得的结果是否仍然属于这个数集(2)试着分析,引入负数,分数,无理数对于运算的影响通过不断的引入新数,数系逐步扩大到了实数系问题4:现在我们要进行数系的再一次扩充就是要解决什么问题?怎么解决?你能具体说一说吗?同学们分析的很好,到目前为止,负数开偶次方的问题还没有解决,我们不妨先来研究负数开平方的问题,从运算的角度来说,也就是要解决方程在实数系中

5、无解的问题像大家说的,我们可以仿照前面的做法,引入一种新数,法国数学家笛卡尔给这些数起名叫虚数,即“虚的数”与“实数”2016全新精品资料-全新公文范文-全程指导写作–独家原创6/6★精品文档★相对应.这是因为最开始研究这种新数是在16世纪,而那个时候人们没能发现什么事物可以支持这样的数如果引入虚数,负数可以开方了,那么就有意义了我们希望,引入虚数后,原来在实数集中给出的运算规则仍能适用例如,在引入虚数后,我们希望能把表示成方根都可以表示成一个实数与看作虚数单位负数、分数和无理数引入时,都相应的带来了一种新的记号,那么对

6、于虚数,用一种什么样的记号来表示呢?现在我们规定:使用来表示的乘积的形式,因此,意大利数学家邦贝利提出可以把;这个数,是伟大的数学家欧拉在1777年,双目失明以后凭借着超乎寻常的意志和毅力,仍然不放弃对科学问题的思索与追求的结果,从而让虚数有了一个特征性的记号从此,也就不在使用表示虚数单位了,而是了那么,这种表示方法既简洁又有特点问题5:不仅仅是虚数吧,你还能说出其他形式的虚数吗?那么通过运算,虚数可以用表示成什么形式呢?一.复数的定义虚数与实数构成了一个新的数集,我们把这个新的数集叫做复数集,记作们就完成了数系的又一次

7、扩充我们把新的数系称作复数系该怎样用描述法表示集合呢?这样我形如数的虚部的数,我们把它们叫做复数,其中叫做复数的实部,叫做复一个复数是由两部分组成的,如果两个复数的实部和虚部分别相等,我们就说这两个复数相等,反之亦然,即这种形式,什么时候表示实数,例题1.判断下列各数哪些是实数、虚数、纯虚数,并指出它们各自的实部和虚部例题2.当取何实数时,复数是:实数虚数纯虚数零结论:三.虚数引入的必要性通过前面的研究,大家对虚数已经有了初步的认识,然而历史上引入虚数,可不是件容易的事,是许多数学家200多年的努力,才奠定了虚数在数学领

8、域的地位开始很多人都不承认虚数,就连科学家牛顿也不认为虚数有多少意义,他认为虚数的引入只是为了使不可解的问题,显得像是可以解的样子事实并非如此,我们最开始研究的问题1,就是16世纪,意大利数学家卡尔达诺研究的一个著名问题:“将10分成两部分,使他们的乘积等于40”2016全新精品资料-全新公文范文-全程指导写作–独家

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。