资源描述:
《函数的奇偶性课件.ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.已知函数f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并画出它的图象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x22.已知f(x)=x3,画出它的图象,并求出f(-2),f(2),f(-1),f(1)及f(-x)解:f(-2)=(-2)3=-8f(2)=8f(-1)=(-1)3=-1f(1)=1f(-x)=(-x)3=-x3思考:你发现了什么规律?f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)f(-2)=-f(2)f(-1)=-f(1)f(-x)=-f(x)-xxf(-x)f
2、(x)-xf(-x)xf(x)xyoxyo(x,y)(-x,y)(-x,-y)(x,y)1.函数奇偶性的概念:偶函数定义:如果对于f(x)定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数.奇函数定义:如果对于f(x)定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数.xoy(a,f(a))(-a,f(-a))-aa奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数.xoy-aa(a,f(a))(-a,f(-a))偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
3、☆对奇函数、偶函数定义的说明:(1).定义域关于原点对称是函数具有奇偶性的必要条件。[a,b][-b,-a]xo(2).奇、偶函数定义的逆命题也成立,即:若f(x)为奇函数,则f(-x)=-f(x)成立。若f(x)为偶函数,则f(-x)=f(x)成立。(3)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。练习1.说出下列函数的奇偶性:偶函数奇函数奇函数奇函数①f(x)=x4________④f(x)=x-1__________②f(x)=x________奇函数⑤f(x)=x-2__________偶函数③f(x)=x5__________⑥f(x)=x-3_
4、______________说明:对于形如f(x)=xn的函数,若n为偶数,则它为偶函数。若n为奇数,则它为奇函数。例1.判断下列函数的奇偶性(1)f(x)=x3+2x(2)f(x)=2x4+3x2解:∵f(-x)=(-x)3+2(-x)=-x3-2x=-(x3+2x)即f(-x)=-f(x)∴f(x)为奇函数∵f(-x)=2(-x)4+3(-x)2=2x4+3x2∴f(x)为偶函数定义域为R解:定义域为R即f(-x)=f(x)解:1-x2≥0
5、x+2
6、≠2-1≦x≦1x≠0且x≠-4-1≦x≦1且x≠0∴定义域为[-1,0)∪(0,1]√1-x2∴f(x)=(x+2)-2∵f(-x)
7、=√1-(-x)2-x√1-x2x-=即f(-x)=-f(x)∴f(x)为奇函数.例2.判断函数f(x)=的奇偶性。
8、x+2
9、-2√1-x2√1-x2x=⑴先求定义域,看是否关于原点对称;⑵再判断f(-x)=-f(x)或f(-x)=f(x)是否恒成立。☆说明:用定义判断函数奇偶性的步骤:练习2.判断下列函数的奇偶性(2)f(x)=-x2+1∴f(x)为奇函数∵f(-x)=-(-x)2+1=-x2+1∴f(x)为偶函数(1)f(x)=x-1x解:定义域为﹛x
10、x≠0﹜解:定义域为R∵f(-x)=(-x)-1-x=-x+1x即f(-x)=-f(x)即f(-x)=f(x)(3).f(x)=5
11、(4)f(x)=0解:(3)f(x)的定义域为R∵f(-x)=f(x)=5∴f(x)为偶函数解:(4)定义域为R∵f(-x)=f(x)=0又f(-x)=-f(x)=0∴f(x)为既奇又偶函数yox5oyx说明:函数f(x)=0(定义域关于原点对称),为既奇又偶函数。(5).f(x)=x+1(6).f(x)=x2x∈[-1,3]解:(5)∵f(-x)=-x+1-f(x)=-x-1∴f(-x)≠f(x)且f(-x)≠–f(x)∴f(x)为非奇非偶函数解:(6)∵定义域不关于原点对称∴f(x)为非奇非偶函数yoxox-13y解:(8)定义域为[0,+∞)∵定义域不关于原点对称∴f(x)为非奇
12、非偶函数(7)f(x)=3(8).f(x)=√x√x解:(7)定义域为R∵f(-x)=3-x=-3√x=-f(x)∴f(x)为奇函数√奇函数说明:根据奇偶性,偶函数函数可划分为四类:既奇又偶函数非奇非偶函数奇函数的图象(如y=x3)偶函数的图象(如y=x2)yxoaaP/(-a,f(-a))p(a,f(a))-ayxoaP/(-a,f(-a))p(a,f(a))-a(-a,-f(a))(-a,f(a))2.奇偶函数图象的性质:⑴奇函数的图象关于