欢迎来到天天文库
浏览记录
ID:54063398
大小:32.50 KB
页数:5页
时间:2020-04-13
《圆柱的体积教学设计及反思 (2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆柱的体积教学设计及反思教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。3.情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。教具:圆柱的体积公式演示教具教学过程:一、教学回顾1、交代
2、任务:这节课我们来学习《圆柱的体积》。2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。二、积极参与探究感受1、猜测圆柱的体积和那些条件有关。2、.探究推导圆柱的体积计算公式。小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。①把圆柱拼成长方体后,形状变了,体积不变。(板书:
3、长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。因为长方体的体积等于(),所以,圆柱体的体积等于()用字母表示()。(2)、底面积是10平方米,高是2米,体积是()。(3)、底面半径是2分米,高是5分米,体
4、积是()。2讨论:(1)已知圆柱底面的半径和高,怎样求圆柱的体积V=兀r2×h(2)已知圆柱底面的直径和高,怎样求圆柱的体积V=兀(d÷2)2×h(3)已知圆柱底面的周长和高,怎样求圆柱的体积V=兀(C÷兀÷2)×h3、练习:已知半径和高求体积,已知直径和高求体积。四、小结或质疑五、作业板书设计:圆柱的体积长方体的体积=底面积x高圆柱的体积=底面积x高V=Sh《圆柱的体积》教学反思本节课的设计思考:一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流
5、、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡
6、导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:在学生们动手操作时,我处理的有点急
7、,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作
8、,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的
此文档下载收益归作者所有