大分位数与上端点的估计.pdf

大分位数与上端点的估计.pdf

ID:54017301

大小:199.14 KB

页数:12页

时间:2020-04-28

大分位数与上端点的估计.pdf_第1页
大分位数与上端点的估计.pdf_第2页
大分位数与上端点的估计.pdf_第3页
大分位数与上端点的估计.pdf_第4页
大分位数与上端点的估计.pdf_第5页
资源描述:

《大分位数与上端点的估计.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、CHINESEJOURNALJune2014Vol.31No.3OFENGINEERINGMATHEMATICSdoi:10.3969/j.issn.1005-3085.2014.03.012ArticleID:1005-3085(2014)03-0424-11EstimatorsforaLargeQuantileandtheUpperEndpoint∗HELa-mei(CollegeofMathematics,SichuanUniversity,Chengdu610064)Abstract:Theestimationofextremev

2、alueindexisaprimaryprobleminextremevaluetheory.Inthispaper,basedonaPickands-typeestimatorfortheextremevalueindex,estimatorsforalargequantileandtheupperendpointofaprobabilitydistributionareestablished.Furthermore,theasymptoticpropertiesoftheseestimatorsarediscussed.Keyword

3、s:extremevalueindex;Pickands'estimator;largequantile;upperendpointClassi cation:AMS(2000)62G32;62G05;62G20CLCnumber:O211.4Documentcode:A1IntroductionLetX1;X2;···beindependentandidenticallydistributed(i.i.d.)randomvariables(r.v.)withacommondistributionfunction(d.f.)F(x),X1

4、;n≤X2;n≤···≤Xn;nstandfortheorderstatisticscorrespondingtor.v.sX1;X2;···;Xn.Supposethereexistsequencesan>0andbn∈RsuchthatlimP(Xn;n≤anx+bn)=G(x);x∈R;(1)n→∞where−1exp{−(1+ x)};1+x>0;̸=0;G(x)=−xexp{−e});x∈R;=0:Gisusuallycalledthegeneralizedextremevalue(GEV)distribution.I

5、f(1)holds,wesaythatthedistributionfunctionFisinthedomainofattractionofG(F∈D(G)).Therealparameteriscalledanextremevalueindex.Manyauthorshavediscussedtheestimationproblemontheextremevalueindex[1-15].Awell-knownestimatorof(∈R)isthePickandsestimator,whichwasproposedbyReceived

6、:21Nov2011.Biography:HeLamei(Bornin1971),Female,Ph.D.,AssociateProfessor.Accepted:24Apr2013.Research eld:extremevaluetheoryandinformationfusion.Foundationitem:TheNationalNaturalScienceFoundationofChina(60874107;10771148);theOpeningFundofGeomathematicsKeyLaboratoryofSichu

7、anProvince(scsxdz2011006).NO.3HeLamei:EstimatorsforaLargeQuantileandtheUpperEndpoint425Pickands[13].Theestimatoris1Xn−m+1;n−Xn−2m+1;n^n=log(2)log2Xn−2m+1;n−Xn−4m+1;nm(n)foranysequenceofintegersm=m(n)satisfyingm(n)→∞;→0.Pickandsnprovedthatthisestimator^nisweaklyconsistent.

8、AlsothestrongconsistencyandasymptoticnormalitywereprovedbyDekkersandDeHaan[2].Oneproblemrelatedt

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。