初三圆的综合复习教案.doc

初三圆的综合复习教案.doc

ID:53310999

大小:94.00 KB

页数:4页

时间:2020-04-03

初三圆的综合复习教案.doc_第1页
初三圆的综合复习教案.doc_第2页
初三圆的综合复习教案.doc_第3页
初三圆的综合复习教案.doc_第4页
资源描述:

《初三圆的综合复习教案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、圆综合复习一、本章知识框架二、本章重点1.圆的定义:2.判定一个点P是否在⊙O上.3.与圆有关的角(1)圆心角(2)圆周角圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:4.圆的性质:在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心

2、距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,

3、它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.4(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对

4、角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:9.圆和圆的位置关系:10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积圆锥的侧面积三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过

5、圆内一点引两条线,各弦被这点所分成的两段的积相等)2.切割线定理 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB例1:已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。解:四、辅助线总结1.圆中常见的辅助线1).作半径,利用同圆或等圆的半径相等.2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.3).作半径和

6、弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.44).作弦构造同弧或等弧所对的圆周角.5).作弦、直径等构造直径所对的圆周角——直角.6).遇到切线,作过切点的弦,构造弦切角.7).遇到切线,作过切点的半径,构造直角.8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.9).遇到三角形的外心常连结外心和三角形的各顶点.10).遇到三角形的内心,常作:(1

7、)内心到三边的垂线;(2)连结内心和三角形的顶点.11).遇相交两圆,常作:(1)公共弦;(2)连心线.12).遇两圆相切,常过切点作两圆的公切线.13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.2、圆中较特殊的辅助线1).过圆外一点或圆上一点作圆的切线.2).将割线、相交弦补充完整.3).作辅助圆.【中考热点】近年来,在中考中圆的应用方面考查较多,与一元二次方程、函数、三角函数、实际问题、作图等是中考中的热点,也是难点.例2已知相交于A、B两点,的半径是10,的

8、半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:例3如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于()A.B.C.D.例4如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,.(1)求EM的长.(2)求sin∠EOB的值.4练习1、如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。