欢迎来到天天文库
浏览记录
ID:53307676
大小:3.72 MB
页数:77页
时间:2020-04-03
《2012版高考数学 3-2-1精品系列专题02 函数(教师版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012版高考数学3-2-1精品系列专题02函数(教师版)【考点定位】2012考纲解读和近几年考点分布2012考纲解读(2)指数函数 ①了解指数函数模型的实际背景.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念,并理解指数函数的单调性掌握指数函数图像通过的特殊点.④知道指数函数是一类重要的函数模型.(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点.③知道对数函数是
2、一类重要的函数模型;④了解指数函数与对数函数互为反函数(a>0,且a≠1).(4)幂函数①了解幂函数的概念.②结合函数的图像,了解它们的变化情况.(5)函数与方程 ①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数. ②根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用 ①了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义. ②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.考纲
3、解读:重点掌握常见函数的性质:定义域、值域、单调性、奇偶性、周期性、图像等;特别是单调性与奇偶性的综合,函数性质与导数、不等式的综合;注意分段函数;要注意函数思想、分类讨论、数形结合思想的灵活应用。熟练掌握三种函数的图像与性质。考题主要围绕运算、性质、图像来考查。要注意逆向问题。3.解答题中常与导数结合考查单调性、极值、最值及某些参数的范围问题.用心爱心专心近几年考点分布本部分内容的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、本部分在高考试卷中一般以选择题或填空题的形式出现,考查的重点是函数的性质
4、和图象的应用,重在检测考生对该部分的基础知识和基本方法的掌握程度.复习该部分以基础知识为主,注意培养用函数性质和函数图象分析问题和解决问题的能力.二次函数、指数函数、对数函数是中学数学的重要函数模型,也是函数内容的主体部分,因此是高考重点考查的对象,在每年的高考试题中都会涉及到对这几种函数模型的考查,既有可能在选择题、填空题中出现,也有可能在解答题中出现,从难度上看,容易题、中档题、难题均有可能出现,以考查这些函数的图象与性质为主,同时还经常将对这些内容的考查与其他知识融合在一起,体现知识点的交汇.要点2.函数的图象1.解决该类问题要熟练
5、掌握基本初等函数的图象和性质,善于利用函数的性质来作图,要合理利用图象的三种变换.2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究.要点3.函数的性质(1)函数的奇偶性:紧扣函数奇偶性的定义和函数的定义域区间关于坐标原点对称、函数图象的对称性等对问题进行分析转化,特别注意“奇函数若在x=0处有定义,则一定有f(0)=0,偶函数一定有f(
6、x
7、)=f(x)”在解题中的应用.(2)函数的单调性:一是紧扣定义;二是充分利用函数的奇偶性、函数的周期性和函数图象的直观性进行分析转化.函数的单调性往往与不等式的解、
8、方程的解等问题交汇,要注意这些知识的综合运用.要点4.二次函数1.求二次函数在某段区间上的最值时,要利用好数形结合,特别是含参数的两种类型:“定轴动区间,定区间动轴”的问题,抓住“三点一轴”用心爱心专心,三点指的是区间两个端点和区间中点,一轴指的是对称轴.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;底数相同,真数不同的对数值用对数函数的单调性进行比较.(2)底数不同、指数也不同,或底数不同、真数也不同的两个数,可以引入中间量或结合图象进行比较.2.对于含参数的指数、对数问题,在应用单调性时,要注意对底数进行讨论,解决对数问题时
9、,首先要考虑定义域,其次再利用性质求解.要点6.函数模型的实际应用解决函数模型的实际应用题,首先应考虑该题考查的是何种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答.明确下面的基本解题步骤是解题的必要基础:→→→要点7.函数零点1.函数零点(方程的根)的确定问题,常见的类型有(1)零点或零点存在区间的确定;(2)零点个数的确定;(3)两函数图象交战的横坐标或有几个交点的确定;解决这类问题的常用方法有:解方程法、利用零点存在的判定或数形结合法,尤其是那些方程两端对应的函数类型不同的方程多以数形结合法求解。
10、2.函数零点(方程的根)的应用问题,即已知函数零点的存在情况求参数的值或取值范围问题,解决该类问题关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解。3.用二分法求函数零点近
此文档下载收益归作者所有