《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc

《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc

ID:53266525

大小:346.50 KB

页数:7页

时间:2020-04-02

《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc_第1页
《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc_第2页
《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc_第3页
《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc_第4页
《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc_第5页
资源描述:

《《1.3.1柱体、椎体、台体的表面积与体积》同步练习1.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《1.3.1柱体、锥体、台体的表面积与体积》同步练习1【课时目标】 1.了解柱体、锥体、台体的表面积与体积的计算公式.2.会利用柱体、锥体、台体的表面积与体积公式解决一些简单的实际问题.1.旋转体的表面积名称图形公式圆柱底面积:S底=________侧面积:S侧=________表面积:S=2πr(r+l)圆锥底面积:S底=________侧面积:S侧=________表面积:S=________圆台上底面面积:S上底=____________下底面面积:S下底=____________侧面积:S

2、侧=__________表面积:S=________________2.体积公式(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S,高为h,则V=______.(3)台体:台体的上、下底面面积分别为S′、S,高为h,则V=(S′++S)h.一、选择题1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为(  )A.8B.C.D.2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为(  )A.B.C.D.3.中心角为135

3、°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B等于(  )A.11∶8B.3∶8C.8∶3D.13∶84.已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为(  )A.a∶bB.b∶aC.a2∶b2D.b2∶a25.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为(  )A.24πcm2,12πcm3B.15πcm2,12πcm3C.24πcm2,36πcm3D.以上都不正确6.三视图如图所示的几何体的全面

4、积是(  )A.7+B.+C.7+D.二、填空题7.一个长方体的长、宽、高分别为9,8,3,若在上面钻一个圆柱形孔后其表面积没有变化,则孔的半径为________.8.圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积为________________cm3.9.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.三、解答题10.圆台的上、下底面半径分别为10cm和20cm.它的侧面展开图扇环的圆心角为180°,那么圆台的表面积和体积

5、分别是多少?(结果中保留π)11.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.能力提升12.一空间几何体的三视图如图所示,则该几何体的体积为(  )A.2π+2B.4π+2C.2π+D.4π+13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).1.在解决棱锥、棱台的侧面积、表面积及体积

6、问题时往往将已知条件归结到一个直角三角形中求解,为此在解此类问题时,要注意直角三角形的应用.2.有关旋转体的表面积和体积的计算要充分利用其轴截面,就是说将已知条件尽量归结到轴截面中求解.而对于圆台有时需要将它还原成圆锥,再借助相似的相关知识求解.3.柱体、锥体、台体的体积之间的内在关系为V柱体=ShV台体=h(S++S′)V锥体=Sh.4.“补形”是求体积的一种常用策略,运用时,要注意弄清补形前后几何体体积之间的数量关系.答案知识梳理1.πr2 2πrl πr2 πrl πr(r+l) πr′2 

7、πr2 π(r′+r)lπ(r′2+r2+r′l+rl)2.(1)Sh (2)Sh作业设计1.B [易知2πr=4,则2r=,所以轴截面面积=×2=.]2.A [设底面半径为r,侧面积=4π2r2,全面积为=2πr2+4π2r2,其比为:.]3.A [设圆锥的底面半径为r,母线长为l,则2πr=πl,则l=r,所以A=πr2+πr2=πr2,B=πr2,得A∶B=11∶8.]4.B [以长为a的直角边所在直线旋转得到圆锥体积V=πb2a,以长为b的直角边所在直线旋转得到圆锥体积V=πa2b.]5.

8、A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24πcm2,12πcm3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,,表面积S表面=2S底+S侧面=(1+2)×1×2+(1+1+2+)×1=7+.]7.3解析 由题意知,圆柱侧面积等于圆柱上、下底面面积和,即2πr×3=2πr2,所以r=3.8.或解析 (1)12为底面圆周长,则2πr=12

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。